ps Thumb sm thumb fbogo resized
Federica Bogo (Project leader)
Alumni
ps Thumb sm thumb img 1090
Matthew Loper
Ph.D. Student
ps Thumb sm ports 160922 1261headcrop2
Michael Black
Director
2 results

2017


Thumb md teaser
Dynamic FAUST: Registering Human Bodies in Motion

Bogo, F., Romero, J., Pons-Moll, G., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
While the ready availability of 3D scan data has influenced research throughout computer vision, less attention has focused on 4D data; that is 3D scans of moving nonrigid objects, captured over time. To be useful for vision research, such 4D scans need to be registered, or aligned, to a common topology. Consequently, extending mesh registration methods to 4D is important. Unfortunately, no ground-truth datasets are available for quantitative evaluation and comparison of 4D registration methods. To address this we create a novel dataset of high-resolution 4D scans of human subjects in motion, captured at 60 fps. We propose a new mesh registration method that uses both 3D geometry and texture information to register all scans in a sequence to a common reference topology. The approach exploits consistency in texture over both short and long time intervals and deals with temporal offsets between shape and texture capture. We show how using geometry alone results in significant errors in alignment when the motions are fast and non-rigid. We evaluate the accuracy of our registration and provide a dataset of 40,000 raw and aligned meshes. Dynamic FAUST extends the popular FAUST dataset to dynamic 4D data, and is available for research purposes at http://dfaust.is.tue.mpg.de.

pdf Project Page [BibTex]

2017

pdf Project Page [BibTex]

2014


Thumb md faust
FAUST: Dataset and evaluation for 3D mesh registration

(Dataset Award, Eurographics Symposium on Geometry Processing (SGP), 2016)

Bogo, F., Romero, J., Loper, M., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3794 -3801, Columbus, Ohio, USA, June 2014 (inproceedings)

Abstract
New scanning technologies are increasing the importance of 3D mesh data and the need for algorithms that can reliably align it. Surface registration is important for building full 3D models from partial scans, creating statistical shape models, shape retrieval, and tracking. The problem is particularly challenging for non-rigid and articulated objects like human bodies. While the challenges of real-world data registration are not present in existing synthetic datasets, establishing ground-truth correspondences for real 3D scans is difficult. We address this with a novel mesh registration technique that combines 3D shape and appearance information to produce high-quality alignments. We define a new dataset called FAUST that contains 300 scans of 10 people in a wide range of poses together with an evaluation methodology. To achieve accurate registration, we paint the subjects with high-frequency textures and use an extensive validation process to ensure accurate ground truth. We find that current shape registration methods have trouble with this real-world data. The dataset and evaluation website are available for research purposes at http://faust.is.tue.mpg.de.

pdf Video Dataset Poster Talk DOI Project Page Project Page [BibTex]

2014

pdf Video Dataset Poster Talk DOI Project Page Project Page [BibTex]