Header logo is ps

ps Thumb sm ports 160922 1261headcrop2
Michael Black
Director
ps Thumb sm bild
Timo Bolkart
Research Scientist
ps Thumb sm pc1a5918
Anurag Ranjan
Ph.D. Student
ps Thumb sm 22007634 1432303603485710 2963791619467371265 n copy
Soubhik Sanyal
Ph.D. Student
ps Thumb sm me
Tianye Li
Alumni
ps Thumb sm 2015 05 gemstone photoshoot cropped
2 results

2018


Thumb xl coma faces
Generating 3D Faces using Convolutional Mesh Autoencoders

Ranjan, A., Bolkart, T., Sanyal, S., Black, M. J.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11207, pages: 725-741, Springer, Cham, September 2018 (inproceedings)

Abstract
Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://coma.is.tue.mpg.de/.

code paper supplementary link (url) DOI Project Page Project Page [BibTex]

2018

code paper supplementary link (url) DOI Project Page Project Page [BibTex]

2017


Thumb xl flamewebteaserwide
Learning a model of facial shape and expression from 4D scans

Li, T., Bolkart, T., Black, M. J., Li, H., Romero, J.

ACM Transactions on Graphics, 36(6):194:1-194:17, November 2017, Two first authors contributed equally (article)

Abstract
The field of 3D face modeling has a large gap between high-end and low-end methods. At the high end, the best facial animation is indistinguishable from real humans, but this comes at the cost of extensive manual labor. At the low end, face capture from consumer depth sensors relies on 3D face models that are not expressive enough to capture the variability in natural facial shape and expression. We seek a middle ground by learning a facial model from thousands of accurately aligned 3D scans. Our FLAME model (Faces Learned with an Articulated Model and Expressions) is designed to work with existing graphics software and be easy to fit to data. FLAME uses a linear shape space trained from 3800 scans of human heads. FLAME combines this linear shape space with an articulated jaw, neck, and eyeballs, pose-dependent corrective blendshapes, and additional global expression from 4D face sequences in the D3DFACS dataset along with additional 4D sequences.We accurately register a template mesh to the scan sequences and make the D3DFACS registrations available for research purposes. In total the model is trained from over 33, 000 scans. FLAME is low-dimensional but more expressive than the FaceWarehouse model and the Basel Face Model. We compare FLAME to these models by fitting them to static 3D scans and 4D sequences using the same optimization method. FLAME is significantly more accurate and is available for research purposes (http://flame.is.tue.mpg.de).

data/model video paper supplemental Project Page [BibTex]

2017

data/model video paper supplemental Project Page [BibTex]