
POCO: 3D Pose and Shape Estimation with Confidence
**Supplementary Material**

In this Supplementary-Material document, we provide
more details about our method. Additionally, please see the
Supplementary Video for a summary of the method and
more visualizations of the results.

1. Regressor Network Architecture
We use three variants of HPS regressors in POCO, i.e.,
PARE [7], HMR-EFT [4], CLIFF [11] as shown in Fig. S.1.

In PARE, the input image is first passed through a CNN
backbone (HRNet-32W), and features are extracted before
the average pooling layer. The features are then passed
through two separate branches: a 2D Part Segmentation
branch and a 3D Body Feature branch. The 2D part seg-
mentation branch produces body-part attention features S ∈
RH×W×(J+1), where J = 24 is the number of SMPL body
parts, while a background mask is assigned to non-human
pixels. The body feature branch is used to estimate SMPL
body parameters. Both branches produce features of the
same spatial dimensions, H×W . The features from S pass
through a spatial softmax normalization layer, κ. These are
used as soft attention masks to aggregate 3D body features
into final features, F = κ(S)⊤ ⊙ B, where S ∈ RHW×J ,
B ∈ RHW×C and F ∈ RJ×C ; note that S and B are re-
shaped before the operation. Each feature row, Fi ∈ R1×C

with i ∈ {1, . . . , J}, passes through a separate MLP to get
SMPL pose parameters, θ = {θi}. To estimate the camera,
C, and SMPL shape, β, all final features F are fed, concate-
nated, to different MLPs.

HMR-EFT uses a simple network architecture for es-
timating HPS. The input image passes through a CNN
backbone (ResNet-50) followed by a global average pool-
ing layer. The features from the pooling layer are used to
regress SMPL pose, θ, shape, β, and camera parameters, C,
through separate MLPs. This regression is done through an
iterative error feedback loop.

CLIFF uses a HRNet-w48 network architecture as a
CNN backbone. Along with the a cropped image, CLIFF
takes the bounding box location information (Bbox Info) as
input to provide the location information of the person in the
image. This helps to accurately predict the global rotation
in the original camera coordinate frame. The bounding box
formation contains the center of bounding box center rela-
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Figure S.1. Regressor architecture.

tive to image center and focal length of the original camera
which is calculated using image height and width. Contrary
to PARE and HMR-EFT, CLIFF computes a 2D keypoint
loss after projecting the body keypoints onto the original
image plane.

2. CLIFF Training and Evaluation
Since the CLIFF training code is not public, we re-
implement it (“CLIFF-Ours”). We train CLIFF-Ours on
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Method HMR-EFT [17] PARE [26] CLIFF [37]

PVE ↓ PCC ↑ PVE ↓ PCC ↑ PVE ↓ PCC ↑

Baseline HPS 106.1 - 97.9 - 85.8 -
Gauss [22] 105.7 0.31 97.1 0.32 85.4 0.29
NFlow [35] 104.9 0.42 96.6 0.44 85.3 0.40

POCO-HPS 101.1 0.52 95.3 0.54 84.6 0.51

Table S.1. Evaluation of POCO and other uncertainty formulations
for different HPS regressors.
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Figure S.2. Per-part uncertainty of POCO-CLIFF. For each im-
age triplet: input image, per-part uncertainty of POCO and whole-
body uncertainty of POCO.

COCO [12], MPII [1], MPI-INF-3D [13], H3.6M [3]
and 3DPW [17] with the same dataset ratios used in
HMR-EFT [4]. For 2D datasets, we use the pseudo ground-
truth SMPL parameters provided by EFT [4] and, for other
datasets, we use the the original annotations provided by the
respective datasets. Following prior work [4, 7], we resize
the cropped image to 224× 224 for both training and eval-
uation. To compute the 2D keypoint loss on the full image,
first we crop the keypoints according to the person bound-
ing box and then project them back to the original image
size. To evaluate on 3DPW test, we use the same bounding
box scale and center used by prior work [7, 8].

3. Performance of Uncertainty Formulations
for different HPS regressors

We compare the performance of our uncertainty formula-
tion (i.e., our Dual Conditioning Strategy) with existing un-
certainty formulations [6, 10] on 3DPW [17] for different
HPS regressors [5, 7, 11] as shown in Tab. S.1. This com-
plements Tab. 3 in the main paper. Our uncertainty formula-
tion outperforms the prior formulations (Gauss and NFlow)
for all HPS regressors in both the pose (PVE) and uncer-
tainty (PCC) metrics. Note that the PCC metric should not
be compared across different HPS methods on its own. Fo-
cusing separately on each HPS method, the important thing
is that our novel uncertainty formulation consistently lowers
PVE errors while increasing the PCC metric; this is indica-
tive of a better uncertainty formulation.

Method Train-Params Test-Params Inference Time

CLIFF 81.0 M 81.0 M 1.45 ms
POCO-CLIFF 82.6 M 81.3 M 1.49 ms

Table S.2. POCO’s overhead when applied to HPS regressor.

4. Per-Part and Per-Vertex Uncertainty
POCO models the uncertainty of SMPL pose parameters in
the following way. First, it estimates the uncertainty for
the axis-angle rotation of each of SMPL’s skeleton joints
separately. This is important because each of these has a
different amount of error. However, for downstream appli-
cations, having a single uncertainty value for the full body is
more practical. To this end, we traverse SMPL’s kinematic
chain (i.e., recursively going in the direction from parent to
child), and add the axis-angle uncertainties of the respective
skeleton joints; as there are 24 joints in total, this produces a
24D vector. We then normalize the 24D vector to the range
of [0, 1] and compute the mean to get a single scalar uncer-
tainty value; this represents the uncertainty for the full body.
The per-part uncertainties and the full-body uncertainty are
shown in Fig. S.2.

A few recent methods [14, 15] show per-vertex uncer-
tainties. They do so by sampling multiple bodies and com-
putes their per-vertex variance as a measure of uncertainty.
While this is an interesting choice, modelling per-vertex
uncertainties in a single feed-forward pass would be ex-
pensive. One would need to model the base density func-
tion and scale network to output 6890 (SMPL vertices) as
compared to only 24 variables (SMPL joints) in the case of
POCO.

5. Overhead of POCO Framework
POCO is a general uncertainty framework that can be ap-
plied to common HPS methods, extending them to also es-
timate uncertainty. It adds a bDF and scale network for esti-
mating uncertainty in a single network pass. Tab. S.2 shows
that POCO imposes only a small overhead. POCO-CLIFF
has only 2% more training parameters than CLIFF due to
adding the bDF and scale network. The former is unused at
test time and the latter is just a small NN, so, adding POCO
increases inference time only minimally.

6. Self-Improved HPS Training
POCO estimates an uncertainty measure that correlates
with pose reconstruction quality. We use this measure to
automatically curate SMPL estimates from the Charades
dataset [16] and improve POCO, using the following steps.

We first sample every 100th frame from the videos to
get a total of 130K images, and apply POCO on these. We
then vary POCO’s uncertainty threshold, and for each value
we automatically curate the produced SMPL estimates and
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Figure S.3. Uncertainty threshold for pseudo-GT selection. Us-
ing an optimal uncertainty threshold of 0.3 for selecting pseudo-
GT from Charades dataset [16] for training, POCO-CLIFF-pGT’s
performance on 3DPW test set is better than the model trained
without it (dashed line). The performance degrades with higher
uncertainty threshold. PVE denotes per-vertex error. The green
line is for number of samples and axis is on the right.

Method PVE ↓ MPJPE ↓ PA-MPJPE ↓ Filter pGT # pGT

POCO-CLIFF 84.6 70.9 43.3 - -
POCO-CLIFF-Whole 87.2 74.7 46.1 ✗ 130K
POCO-CLIFF-Rand 86.6 73.9 45.6 ✗ 46K
POCO-CLIFF-pGT 83.5 69.7 42.8 ✓ 46K

Table S.3. Effect of uncertainty-filtered pGT data on 3DPW.
“Whole” trains with all data [16] without filtering, “Rand” with
random samples, and “pGT” filters using POCO uncertainty.

extend POCO’s training data. This results in multiple ex-
tended training datasets. We finetune POCO separately for
each of these, and evaluate each finetuned model on 3DPW.

The evaluation results are shown in Fig. S.3. The dashed
gray line shows POCO-CLIFF (with no additional pseudo-
GT). The blue curve shows the PVE error (mm) of the fine-
tuned variants. The green curve shows the number of cu-
rated samples for each threshold. With a low threshold
(0.1) very few samples pass, thus, performance is almost
unchanged. With a high threshold (≥ 0.45), as the threshold
gets higher, more samples of decreasing quality pass, which
can even harm performance. For thresholds in the range of[
0.2, 0.4

]
enough good-quality samples pass so that perfor-

mance improves. The best performance is achieved for a
threshold of 0.3, which results in adding roughly 46k sam-
ples in the training dataset; given the limited number of sub-
jects and pose variation compared to the original dataset,
the performance shows that this bootstrapping is promis-
ing. Note that the threshold is determined on the Charades
dataset by visual inspection. 3DPW test data is not used in
setting the threshold. Random samples of pseudo ground-
truth generated by POCO-CLIFF on Charades dataset is
shown in Fig. S.5.

To better understand the degree of self-improvement,
we perform two additional baseline experiments. POCO-
CLIFF-pGT uses 46K frames (out of 130K) from the Cha-
rades dataset, filtered using our uncertainty estimates. For
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Figure S.4. Failure cases of POCO. In some cases of occlusion
and out-of-distribution poses, POCO estimates high uncertainty
even though the pose reconstructions are not totally implausible.

comparison, we re-train POCO-CLIFF: (1) using all 130K
frames (“Whole”), and (2) using 46K frames randomly
sampled from the 130K (“Rand”). All methods use POCO-
CLIFF SMPL estimates as pGT. Tab. S.3 shows that adding
data without confidence filtering makes results worse, while
our self-improvement process improves them.

7. Details on infilling with uncertainty

For the second downstream task detailed in Sec. 5.4, we use
POCO’s uncertainty estimates to automatically detect and
remove the uncertain pose estimates from a video sequence.
Subsequently, we apply GLAMR [18] to inpaint the 3D
bodies for frames with uncertain pose estimates. However,
GLAMR has certain limitations and we use heuristics to
avoid these. Specifically, we exclusively consider video se-
quences with a confidence level exceeding 0.3 for both the
initial and final 5 frames; that is, infilling requires reliable
pose estimates for the starting and ending video parts. Ad-
ditionally, we exclude video sequences in which more than
15 consecutive frames exhibit an uncertainty exceeding 0.7,
otherwise GLAMR’s infiller is significantly challenged.

8. Failure Cases

In Fig. S.4, we show some representative cases in which
POCO’s prediction quality and its uncertainty estimate dis-
agree. Typically, POCO produces more plausible poses than
other HPS methods [2, 7], even for complex scenarios of
heavy occlusion and out-of-distribution poses. However,
sometimes POCO estimates high uncertainty, even if the
poses it produces are reasonable; think of this a “false neg-
ative”. In Fig. S.4 each image either contains an unusual
pose, motion blur, occlusion, or dim lighting – in some
cases more than one of these. It is reasonable for the net-
work to be uncertain of its estimates in these cases, even if
it happens to get the pose right (or close).



9. Effect of Occlusion on Uncertainty
POCO estimates 3D body parameters and their uncertainty
in a single feed-forward pass. The uncertainty is corre-
lated to image ambiguities and the quality of reconstruc-
tion. We analyze the correlation qualitatively on 3DPW for
the POCO-HMR-EFT network. Specifically, we add a syn-
thetic occluder that we swipe throughout the video frames
to see the effect on uncertainty; see Fig. S.6. We observe
that uncertainty increases when a body part is occluded.

10. Qualitative Results
We qualitatively compare POCO with the deterministic
HPS methods like CLIFF [11], PARE [7], and the proba-
bilistic methods ProHMR [9] and Sengupta et al. [14]. The
results are shown in Fig. S.7 and Fig. S.8, respectively.
Please see the video on our website for more examples.
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Figure S.5. Automatic pseudo-GT. Random samples of pseudo-GT generated by POCO-CLIFF on Charades [16] dataset. We keep the
frames with lower uncertainty and treat the output SMPL parameters as pseudo ground-truth for re-training.
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Figure S.6. Effect of occlusion on uncertainty. When an image becomes ambiguous due to a synthetic occluder, POCO-HMR-EFT
estimates a higher uncertainty.
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Figure S.7. Qualitative evaluation for in-the-wild images. We show results for CLIFF [11], PARE [7] and POCO versions of respective
HPS methods, i.e., POCO-CLIFF and POCO-PARE.
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Figure S.8. Qualitative evaluation for in-the-wild images. We show results for ProHMR [9], Sengupta et al. [2], and our POCO-PARE.


