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1 Data Generation

MoCap Data. To pose the body we use 1,515 MoCap sequences from the CMU
dataset [1], 62 from HumanEva [14], 41 from the PosePrior dataset [3] and 157
unpublished sequences recorded with our own motion capture system. To reduce
the similarity of poses we subsample every 10th frame, resulting in 12 fps for
most of the datasets. We end up with 253, 762 individual poses.

Hand Poses. Without variations of hand poses, a keypoint detector trained
on the synthetic data might not generalize to other hand poses. To avoid this,
we use SMPL+H [13] and pose the hands and fingers. However, conventional
MoCap systems do not record the pose of fingers [1,3,14]. To obtain realistic
poses for hands and fingers we use the “embodied hands” dataset [13].

Shape. Besides body pose, humans differ in their body shape. To express
these differences in our synthetic datasets we extract shape parameters 8 from
standard MoCap datasets using MoSh [9].

Textures. Textures have a large influence on the perceived realism of syn-
thetic data. For the synthetic humans we use the textures published with the
SURREAL dataset [18]. The dataset provides 772 textures of people in casual
clothing and 157 in minimal clothing. The former were collected by the authors
of [18]. The latter were acquired from the CAESAR dataset [11]. We use 80%
of these textures and keep the remaining 20% for validation and test data, even
though we do not use any synthetic validation or test data for this particular
work. The reason for this decision is to keep the data splits for training, test and
validation consistent across projects.

Noise and Lighting. Real images are subject to multiple sources of noise,
for example motion blur or defocus. Furthermore, they are taken under varying
lighting conditions. We model noise with Gaussian blur. We blur x and y di-
rection independently with a probability of 0.5, each. The size of the Gaussian
kernel in pixels is given by the absolute value sampled from a standard nor-
mal distribution. We vary lighting conditions similarly as [18, 10] using spherical
harmonics [6] with randomly drawn coefficients.

Sampling Motions. Sampling MoCap sequences randomly does not guar-
antee that every MoCap sequence is used. To ensure that, we select the sequence
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for the first synthetic human deterministically. MoCap sequences for all other
synthetic humans are sampled randomly. The probability of sampling a MoCap
% Here |S;| denotes the number of frames of
sequence i and |S| the number olf sequences. Since the chosen sequences might
have different length, we further randomly sample for each one the frame ID for
the starting frame, to encourage the use of the whole sequences.

Changing Rendering Parameters. To increase variance in the dataset
multiple parameters are changed. For each MoCap sequence we change the cam-
era position, number of humans and the global rotation of each synthetic human.
In contrast, background image and lighting as well as position, pose, shape and
texture of synthetic humans are changed for each frame.

Scene Generation. After sampling all these parameters, each virtual hu-
man is placed on an invisible ground plane in the field of view of the camera.
Maximal distance to the camera are 12 m.

Collision Detection. The meshes of synthetic humans in the 3D scene
might intersect, resulting in physically impossible configurations. A quick and
easy way of detecting collisions are axis aligned bounding boxes. However, their
usage results in a large number of false positives and limits the distances between
virtual humans. For multi-person pose estimation, however, small distances be-
tween humans are frequent and should be represented in the training data. We
draw inspiration from [17] and use bounding volume hierarchies (BVH) [16] in-
stead. This is an efficient method to check for collisions on triangle level. Thus,
it allows for smallest possible distances between the meshes.

Whenever two synthetic humans collide, we search for a new, valid position
for one of them before rendering the image. Frames with mesh self-collisions are
not rejected, as they are very frequent for highly articulated poses, which might
be important for a pose-estimation dataset.

sequence S; is given by p; =

2 Datasets

Tab. A.1 shows a comparison of our datasets to related other datasets. JTA and
SURREAL are much larger, however SURREAL only considers a single person
in indoor environments and JTA only urban scenes in surveillance scenarios. Our
datasets have a much higher variety in terms of scenes.

Example images for Dg can be seen in Fig. A.1

2.1 Djps and Dgiyie - Qualitative Results

Fig. A.2 and A.3 show example images of D), and the corresponding images
from Dgyye. In particular Fig. A.2 (A) shows that the style transfer method
generates realistic variations of textures and changes their color. In Fig. A.2 (B,
C) and Fig. A.3 (A, B, C) it can be seen that the method adapts the lighting of
textures to fit better into the scene. It greatly improves blending-in of synthetic
humans. Fig A.2 (D) and Fig A.3 (D) show failure cases. Here, larger parts of
the background were included in the human mask of mask-RCNN [7,2]. As a
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Fig. A.1. Example images from Dg. The dataset contains images with interesting
poses, challenging backgrounds, variance in camera position and heavy occlusion.
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Table A.1. Number of frames and poses for our datasets and for the most related syn-
thetic datasets. All datasets are multi-person datasets, except for SURREAL. For Dy
and Dsiyie “#Synthetic Humans” corresponds to the additional number of synthetic
humans. For Dg, SURREAL, JTA and SURREAL-style multi-person “#Synthetic Hu-
mans” corresponds to the number of annotated poses.

Dataset F#frames #Synthetic Humans
Ds ours 70,379 580, 693

Dum ours 74,628 279, 605
Dsityte ours 74,352 279,278
SURREAL [18] 6,536,752 6,536, 752
JTA [5] 460,800 10,000, 000
SURREAL-style multi-person [12] 40,000 186, 000

result, synthetic humans are partially stylized in the style of the background.
This leads to the observable ghost-effect.

3 Training

Pose Estimation Network. Unfortunately not all hyper-parameters used for
training on the MPII pose estimation dataset were provided for the OpenPose
network. Our hyper-parameter search results in a model that approaches the
original performance. Differences in performance may be due to a different choice
of optimizer. We use the more common Adam algorithm [8], whereas Cao et al. [4]
rely on SGD. Our hyperparameter search lead to a learning rate of Ir = 0.0001,
B1 = 0.8 and B = 0.999. Furthermore, we found that a learning rate decay
improves results. We decay the learning rate every 20.000 steps with a decay
rate of 0.66. We use a batch size of 32.

Most of our models are initialized with weights pretrained on real data. The
only 2 models that are not pretrained on real pose estimation data are Mp,,
and Mp,. For these models we follow the same procedure as proposed by Cao
et al. [4] and initialize them with the first 10 layers of VGG-19. The remaining
weights are randomly initialized.

Training with Synthetic Data. All models trained with synthetic data
are initialized with pretrained weights. These weights are obtained by training
OpenPose for 70.000 steps on real data. Whenever we start from these pretrained
weights, we use an initial learning rate of Ir = 0.00005.

3.1 Data Augmentation

To increase the number of training samples we apply standard data augmentation
techniques. We implement the same data augmentation pipeline as Cao et al. [4],
however the hyperparameters might be different. We scale the image in the
range [0.4, 1.6], rotate it by a uniformly sampled value in the interval [—45°, 45°].
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Fig. A.2. Example images from Dj; and the respective image from Dg¢yie. Last row
shows a failure case with ghost-like appearance of synthetic humans.
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Fig. A.3. Example images from Dj; and the respective image from Dg¢yie. Last row
shows a failure case with ghost-like appearance of synthetic humans.
gl
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Furthermore, each image is cropped around a target person. Size of the crop is
368 x 368 px. We add noise to the center of the crop. It is uniformly sampled from
[—50, 50] px. Finally, with probability of 0.5 the image is flipped horizontally.

3.2 The Teacher Network

To optimize the teacher we use a constant learning rate of 0.00005. Similar to
optimization of the OpenPose network we use the Adam algorithm with 8; = 0.8
and £ = 0.999.

Architecture. The teacher network consists of two parts. The first part
are the first 10 layers of VGG-19 [15] and is identical to the OpenPose feature
extractor. Similar to the OpenPose feature extractor the weights of VGG-19 are
used to initialize it. The second part of the teacher network differs from the
OpenPose network. It consists of 3 x 3 x 256 and 3 x 3 x 128 convolutional layers,
followed by two 3 x 3 x 64 layers. After every two layers we add a max pooling
layer. The last two layers are fully-connected with 512 units each.

4 Multi-Person Pose Estimation - Qualitative Results

Qualitative results for Mp,, “adversarial Teacher” C and Mp, D, ;. +masks
can be seen in Fig. A.4, Fig. A.5 and Fig. A.6. While a clear improvement can be
seen by “adversarial Teacher” C and Mp,1pg,,,. +masks Over Mp,, differences
between “adversarial Teacher” C and MDR+’DS“/Ze+maSkS are more subtle. We
found that their predictions are qualitatively on par for most images.

As can be seen in Fig. A.4 (A, B) and Fig. A.6 (A) grouping of joints fails fre-
quently for Mp,,. In contrast, erroneous grouping can be less frequently observed
for our models. Thus, the models trained on our datasets improve in their ability
to group joints. For very crowded scenes as shown in Fig. A.4 (A) and Fig. A.6
(A) the “adversarial Teacher” C' seems to outperform Mp, pg,,;. +masks. Thus,
adversarial training on the more crowded purely synthetic dataset is beneficial
for real crowded scenes.

Besides grouping, training on our datasets seems to improve the detection
of occluded people and occluded keypoints. Examples for this can be seen in
Fig. A4 (A, B, C), Fig. A.5 (B, C) and Fig. A.6 (A). Of particular interest is
Fig. A.5 (A). Here it can be seen that the training on purely synthetic data with
adversarial teacher leads to better detection of people under challenging imaging
conditions and improves the detection and grouping of joints in front of highly
cluttered backgrounds.

Last, Fig. A.6 (A, B) suggest that “adversarial Teacher” C improves the pre-
diction for uncommon camera positions. Thus, training on the most challenging
camera positions improves the predictions for such images in comparison to Mp,,
and MDR+DStyze+masks-
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Fig. A.4. Example images with detected poses for Mp, the model trained with ad-
versarial teacher using the camera pitch grouping (“adversarial Teacher” C') and our
best model Mpy1pg,,), +masks-
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Fig. A.5. Example images with detected poses for Mp,,, the model trained with ad-
versarial teacher using the camera pitch grouping (“adversarial Teacher” C') and our
best model Mpy1pg,,;, +masks-
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Fig. A.6. Example images with detected poses for Mp,, the model trained with ad-
versarial teacher using the camera pitch grouping (“adversarial Teacher” C) and our
best model Mpyipg,,), +masks-
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