

Yana Hasson^{1,2}

Dimitrios Tzionas ³

Igor Kalevatykh^{1,2}

Michael J. Black³

Ivan Laptev^{1,2}

Cordelia Schmid ^{1, 4}

CALIFORNIA June 16-20, 2019

Learning Joint Reconstruction of Hands and Manipulated Objects

² Département d'informatique de l'ENS, CNRS, PSL Research University

³ MPI for Intelligent Systems, Tübingen ⁴ Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK

Introduction

Goal & Contributions

- Reconstruct hand and object meshes given a single RGB image as input.
- Generate a **synthetic** dataset of hands interacting with objects.
- Enforce **physics constraints** in an end-to-end learning framework.

Motivation

- Understanding object manipulation is critical to teach robots how to perform useful tasks.
- Ground truth shapes are difficult to obtain for hands and objects in real images.
- Synthetic data is cheap to generate and comes with 3D ground truth, allowing to train CNNs in a fully supervised frameworks.

Gül Varol ^{1,2}

Contact regions: Vertices

on MANO [6] that are often

in contact with objects

LONG BEACH

— ObMan dataset: Synthetic OBject MANipulation

Generation of diverse grasps leveraging robotics and graphics

- 8 object categories (bowls, botles, cans, ...), 2.7K instances of objects from ShapeNet [1]
- Automatically generated realistic object grasps using GraspIT [8], following [3]

Samples from the generated ObMan dataset

A diverse dataset of hand-object configurations

- Large variety of body and hand poses
- Realistic textures from hand scans
- Object textures selected randomly from ShapeNet
- Randomized lighting

split train val test #object instances 4K 0.4K 0.4K #grasp instances 15K 141K 6K 6K #frames

ObMan dataset statistics

Hand-Object Reconstruction Hand reconstruction: regressing MANO MANO [6] hand model parameters. Hand Object reconstruction: deforming a sphere using AtlasNet [4]. encoder Relative position: regressing object scale and translation relative to the Object

Contact losses: enforcing physically plausible graps $\mathcal{L}_{C \text{ ontact}} = \lambda_R \mathcal{L}_R + (1 - \lambda_R) \mathcal{L}_A$

Repulsion loss: penalizes interpenetration between hand and

regions of the hand to be close to the object V_{O b j}: object vertices $V_{\rm H\,an\,d}$: hand vertices Int(Obj): object interior Ext(Obj): object exterior d: usual distance C_i: Contact regions

 $\mathcal{L}_{R}(V_{Obj}, V_{Hand}) = \sum \mathbb{1}_{v \in Int(V_{Obj})} l_{r}(d(v, V_{Obj}))$

Attraction loss: encourages contact

 $\mathcal{L}_{A}(V_{Obj}, V_{Hand}) = \sum l_{a}(d(C_{i} \cap \text{Ext}(Obj), V_{Obj}))$

Contact function: soft penalization vertex distances

 $I_{\alpha}(x) = \alpha \tanh \left(\frac{x}{a}\right)$

— Results: First Hand Action Benchmark [2]

Only repulsion $(\lambda_R = 1)$

Attraction \mathcal{L}_{A} encourages contacts, but induces interpenetration when used independently

Repulsion \mathcal{L}_{R} prevents interpenetration, and balances the effect of the attraction term

Used in combination, \mathcal{L}_{R} and \mathcal{L}_{A} reduce interpenetration, while preserving hand-object reconstruction accuracy

FHB Dataset Intersection Hand Object Maximum Simulation Intersection Error Error Penetration Displacement Volume 41.2 12.1 28.8 1565 Attraction+ Repulsion($\lambda_R = 0.5$) 11.6 638 12.2 17.6

Transfer: synthetic-to-real

Results: CORe50 dataset [5]

To investigate the domain gap between our synthetic renderings and real datasets, we increasingly match the statistics (hand pose, object shape) of the small Hands in aCtion (HIC) [7] dataset.

dataset	object shape	hand pose	image domain
(d)	HIC	HIC	real
(c)	HIC	HIC	synthetic
(b)	HIC	GraspIt	synthetic
(a)	ShapeNet	GraspIt	synthetic

Matching the target hand pose and object shape distributions in the synthetic dataset is crucial for good performances on the real dataset.

Pretraining on ObMan before fine-tuning on FHB improves both hand and object reconstructions in low-data regimes

Real: Encoders initialized with ImageNet weights, hand and object decoders initialized randomly, trained on real data **Synth**: Trained on synthetic dataset from ImageNet weights

Synth2Real: All weights initialized from hand-object reconstruction task trained on ObMan, fine-tuned on real dataset

Experiment: effect of occlusions

Hands-only images (H-image) and object-only images (O-image) in our dataset enable to systematically study the effect of mutual occlusions on hand pose estimation and object reconstruction

Evaluation images H-image HO-image mepe (mm)

Evaluation images O-image HO-image 0.0242 0.0722 O-image 0.0319 0.0302 chamfer distance

Training with occlusions is crucial when targeting images of hand-object interactions.

- 1] Chang et al., ShapeNet: An information-rich 3D model repository, 2015
- References [2] Garcia-Hernando et al., First-person hand action benchmark with RGB-D videos and 3D hand pose annotations, CVPR 2018. [3] Goldfeder et al, The Columbia grasp database, ICRA 2009.

[8] Miller et al., Graspit! A versatile simulatorfor robotic grasping, Robotics Automation Magazine 2004

[4] Groueix et al., AtlasNet: A papier-mâché approach to learning 3D surface generation, CVPR 2018. [5] Lomonaco et al., Core50: a new dataset and benchmark for continuous object recognition, CoRL 2017. [6] Romero et al., Embodied hands: Modeling and capturing hands and bodies together, SIGGRAPH Asia 2017 [7] Tzionas et al., Capturing hands in action using discriminative salient points and physics simulation, IJCV 2016

https://hassony2.github.io/obmar yana.hasson@inria.fr