Header logo is ps


2020


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

arxiv project page [BibTex]

2020


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
We present a fully-automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires (1) the generated human bodies should be semantically plausible with the 3D environment, e.g. people sitting on the sofa or cooking near the stove; (2) the generated human-scene interaction should be physically feasible in the way that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human pose conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

arXiv code [BibTex]

arXiv code [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]

arXiv [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

pdf [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

Paper Publisher Version poster link (url) DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

[BibTex]

[BibTex]

2010


Visibility Maps for Improving Seam Carving
Visibility Maps for Improving Seam Carving

Mansfield, A., Gehler, P., Van Gool, L., Rother, C.

In Media Retargeting Workshop, European Conference on Computer Vision (ECCV), september 2010 (inproceedings)

webpage pdf slides supplementary code [BibTex]

2010

webpage pdf slides supplementary code [BibTex]


A {2D} human body model dressed in eigen clothing
A 2D human body model dressed in eigen clothing

Guan, P., Freifeld, O., Black, M. J.

In European Conf. on Computer Vision, (ECCV), pages: 285-298, Springer-Verlag, September 2010 (inproceedings)

Abstract
Detection, tracking, segmentation and pose estimation of people in monocular images are widely studied. Two-dimensional models of the human body are extensively used, however, they are typically fairly crude, representing the body either as a rough outline or in terms of articulated geometric primitives. We describe a new 2D model of the human body contour that combines an underlying naked body with a low-dimensional clothing model. The naked body is represented as a Contour Person that can take on a wide variety of poses and body shapes. Clothing is represented as a deformation from the underlying body contour. This deformation is learned from training examples using principal component analysis to produce eigen clothing. We find that the statistics of clothing deformations are skewed and we model the a priori probability of these deformations using a Beta distribution. The resulting generative model captures realistic human forms in monocular images and is used to infer 2D body shape and pose under clothing. We also use the coefficients of the eigen clothing to recognize different categories of clothing on dressed people. The method is evaluated quantitatively on synthetic and real images and achieves better accuracy than previous methods for estimating body shape under clothing.

pdf data poster Project Page [BibTex]

pdf data poster Project Page [BibTex]


Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors
Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors

Baak, A., Helten, T., Müller, M., Pons-Moll, G., Rosenhahn, B., Seidel, H.

In European Conference on Computer Vision (ECCV Workshops), September 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Trainable, Vision-Based Automated Home Cage Behavioral Phenotyping
Trainable, Vision-Based Automated Home Cage Behavioral Phenotyping

Jhuang, H., Garrote, E., Edelman, N., Poggio, T., Steele, A., Serre, T.

In Measuring Behavior, August 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Decoding complete reach and grasp actions from local primary motor cortex populations
Decoding complete reach and grasp actions from local primary motor cortex populations

(Featured in Nature’s Research Highlights (Nature, Vol 466, 29 July 2010))

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J., Black, M. J., Donoghue, J. P.

J. of Neuroscience, 39(29):9659-9669, July 2010 (article)

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]


Multisensor-Fusion for 3D Full-Body Human Motion Capture
Multisensor-Fusion for 3D Full-Body Human Motion Capture

Pons-Moll, G., Baak, A., Helten, T., Müller, M., Seidel, H., Rosenhahn, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2010 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


Contour people: A parameterized model of {2D} articulated human shape
Contour people: A parameterized model of 2D articulated human shape

Freifeld, O., Weiss, A., Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR), pages: 639-646, IEEE, June 2010 (inproceedings)

Abstract
We define a new “contour person” model of the human body that has the expressive power of a detailed 3D model and the computational benefits of a simple 2D part-based model. The contour person (CP) model is learned from a 3D SCAPE model of the human body that captures natural shape and pose variations; the projected contours of this model, along with their segmentation into parts forms the training set. The CP model factors deformations of the body into three components: shape variation, viewpoint change and part rotation. This latter model also incorporates a learned non-rigid deformation model. The result is a 2D articulated model that is compact to represent, simple to compute with and more expressive than previous models. We demonstrate the value of such a model in 2D pose estimation and segmentation. Given an initial pose from a standard pictorial-structures method, we refine the pose and shape using an objective function that segments the scene into foreground and background regions. The result is a parametric, human-specific, image segmentation.

pdf slides video of CVPR talk Project Page [BibTex]

pdf slides video of CVPR talk Project Page [BibTex]


Coded exposure imaging for projective motion deblurring
Coded exposure imaging for projective motion deblurring

Tai, Y., Kong, N., Lin, S., Shin, S. Y.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2408-2415, June 2010 (inproceedings)

Abstract
We propose a method for deblurring of spatially variant object motion. A principal challenge of this problem is how to estimate the point spread function (PSF) of the spatially variant blur. Based on the projective motion blur model of, we present a blur estimation technique that jointly utilizes a coded exposure camera and simple user interactions to recover the PSF. With this spatially variant PSF, objects that exhibit projective motion can be effectively de-blurred. We validate this method with several challenging image examples.

Publisher site [BibTex]

Publisher site [BibTex]


Tracking people interacting with objects
Tracking people interacting with objects

Kjellstrom, H., Kragic, D., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 747-754, June 2010 (inproceedings)

pdf Video [BibTex]

pdf Video [BibTex]


Secrets of optical flow estimation and their principles
Secrets of optical flow estimation and their principles

Sun, D., Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 2432-2439, IEEE, June 2010 (inproceedings)

pdf Matlab code code copryright notice [BibTex]

pdf Matlab code code copryright notice [BibTex]


Guest editorial: State of the art in image- and video-based human pose and motion estimation
Guest editorial: State of the art in image- and video-based human pose and motion estimation

Sigal, L., Black, M. J.

International Journal of Computer Vision, 87(1):1-3, March 2010 (article)

pdf from publisher [BibTex]

pdf from publisher [BibTex]


{HumanEva}: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion

Sigal, L., Balan, A., Black, M. J.

International Journal of Computer Vision, 87(1):4-27, Springer Netherlands, March 2010 (article)

Abstract
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HumanEva datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40,000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
Modellbasierte Echtzeit-Bewegungsschätzung in der Fluoreszenzendoskopie

Stehle, T., Wulff, J., Behrens, A., Gross, S., Aach, T.

In Bildverarbeitung für die Medizin, 574, pages: 435-439, CEUR Workshop Proceedings, 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


{Robust one-shot 3D scanning using loopy belief propagation}
Robust one-shot 3D scanning using loopy belief propagation

Ulusoy, A., Calakli, F., Taubin, G.

In Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, pages: 15-22, IEEE, 2010 (inproceedings)

Abstract
A structured-light technique can greatly simplify the problem of shape recovery from images. There are currently two main research challenges in design of such techniques. One is handling complicated scenes involving texture, occlusions, shadows, sharp discontinuities, and in some cases even dynamic change; and the other is speeding up the acquisition process by requiring small number of images and computationally less demanding algorithms. This paper presents a “one-shot” variant of such techniques to tackle the aforementioned challenges. It works by projecting a static grid pattern onto the scene and identifying the correspondence between grid stripes and the camera image. The correspondence problem is formulated using a novel graphical model and solved efficiently using loopy belief propagation. Unlike prior approaches, the proposed approach uses non-deterministic geometric constraints, thereby can handle spurious connections of stripe images. The effectiveness of the proposed approach is verified on a variety of complicated real scenes.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Scene Carving: Scene Consistent Image Retargeting
Scene Carving: Scene Consistent Image Retargeting

Mansfield, A., Gehler, P., Van Gool, L., Rother, C.

In European Conference on Computer Vision (ECCV), 2010 (inproceedings)

webpage+code pdf supplementary poster [BibTex]

webpage+code pdf supplementary poster [BibTex]


Epione: An Innovative Pain Management System Using Facial Expression Analysis, Biofeedback and Augmented Reality-Based Distraction
Epione: An Innovative Pain Management System Using Facial Expression Analysis, Biofeedback and Augmented Reality-Based Distraction

Georgoulis, S., Eleftheriadis, S., Tzionas, D., Vrenas, K., Petrantonakis, P., Hadjileontiadis, L. J.

In Proceedings of the 2010 International Conference on Intelligent Networking and Collaborative Systems, pages: 259-266, INCOS ’10, IEEE Computer Society, Washington, DC, USA, 2010 (inproceedings)

Abstract
An innovative pain management system, namely Epione, is presented here. Epione deals with three main types of pain, i.e., acute pain, chronic pain, and phantom limb pain. In particular, by using facial expression analysis, Epione forms a dynamic pain meter, which then triggers biofeedback and augmented reality-based destruction scenarios, in an effort to maximize patient's pain relief. This unique combination sets Epione not only a novel pain management approach, but also a means that provides an understanding and integration of the needs of the whole community involved i.e., patients and physicians, in a joint attempt to facilitate easing of their suffering, provide efficient monitoring and contribute to a better quality of life.

Paper Project Page DOI [BibTex]

Paper Project Page DOI [BibTex]


Phantom Limb Pain Management Using Facial Expression Analysis, Biofeedback and Augmented Reality Interfacing
Phantom Limb Pain Management Using Facial Expression Analysis, Biofeedback and Augmented Reality Interfacing

Tzionas, D., Vrenas, K., Eleftheriadis, S., Georgoulis, S., Petrantonakis, P. C., Hadjileontiadis, L. J.

In Proceedings of the 3rd International Conferenceon Software Development for EnhancingAccessibility and Fighting Info-Exclusion, pages: 23-30, DSAI ’10, UTAD - Universidade de Trás-os-Montes e Alto Douro, 2010 (inproceedings)

Abstract
Post-amputation sensation often translates to the feeling of severe pain in the missing limb, referred to as phantom limb pain (PLP). A clear and rational treatment regimen is difficult to establish, as long as the underlying pathophysiology is not fully known. In this work, an innovative PLP management system is presented, as a module of an holistic computer-mediated pain management environment, namely Epione. The proposed Epione-PLP scheme is structured upon advanced facial expression analysis, used to form a dynamic pain meter, which, in turn, is used to trigger biofeedback and augmented reality-based PLP distraction scenarios. The latter incorporate a model of the missing limb for its visualization, in an effort to provide to the amputee the feeling of its existence and control, and, thus, maximize his/her PLP relief. The novel Epione-PLP management approach integrates edge-technology within the context of personalized health and it could be used to facilitate easing of PLP patients' suffering, provide efficient progress monitoring and contribute to the increase in their quality of life.

Paper Project Page link (url) [BibTex]

Paper Project Page link (url) [BibTex]


 Automated Home-Cage Behavioral Phenotyping of Mice
Automated Home-Cage Behavioral Phenotyping of Mice

Jhuang, H., Garrote, E., Mutch, J., Poggio, T., Steele, A., Serre, T.

Nature Communications, Nature Communications, 2010 (article)

software, demo pdf [BibTex]

software, demo pdf [BibTex]


no image
An automated action initiation system reveals behavioral deficits in MyosinVa deficient mice

Pandian, S., Edelman, N., Jhuang, H., Serre, T., Poggio, T., Constantine-Paton, M.

Society for Neuroscience, 2010 (conference)

pdf [BibTex]

pdf [BibTex]


Dense Marker-less Three Dimensional Motion Capture
Dense Marker-less Three Dimensional Motion Capture

Soren Hauberg, Bente Rona Jensen, Morten Engell-Norregaard, Kenny Erleben, Kim S. Pedersen

In Virtual Vistas; Eleventh International Symposium on the 3D Analysis of Human Movement, 2010 (inproceedings)

Conference site [BibTex]

Conference site [BibTex]


ImageFlow: Streaming Image Search
ImageFlow: Streaming Image Search

Jampani, V., Ramos, G., Drucker, S.

MSR-TR-2010-148, Microsoft Research, Redmond, 2010 (techreport)

Abstract
Traditional grid and list representations of image search results are the dominant interaction paradigms that users face on a daily basis, yet it is unclear that such paradigms are well-suited for experiences where the user‟s task is to browse images for leisure, to discover new information or to seek particular images to represent ideas. We introduce ImageFlow, a novel image search user interface that ex-plores a different alternative to the traditional presentation of image search results. ImageFlow presents image results on a canvas where we map semantic features (e.g., rele-vance, related queries) to the canvas‟ spatial dimensions (e.g., x, y, z) in a way that allows for several levels of en-gagement – from passively viewing a stream of images, to seamlessly navigating through the semantic space and ac-tively collecting images for sharing and reuse. We have implemented our system as a fully functioning prototype, and we report on promising, preliminary usage results.

url pdf link (url) [BibTex]

url pdf link (url) [BibTex]


Stick It! Articulated Tracking using Spatial Rigid Object Priors
Stick It! Articulated Tracking using Spatial Rigid Object Priors

Soren Hauberg, Kim S. Pedersen

In Computer Vision – ACCV 2010, 6494, pages: 758-769, Lecture Notes in Computer Science, (Editors: Kimmel, Ron and Klette, Reinhard and Sugimoto, Akihiro), Springer Berlin Heidelberg, 2010 (inproceedings)

Publishers site Paper site Code PDF [BibTex]

Publishers site Paper site Code PDF [BibTex]


Gaussian-like Spatial Priors for Articulated Tracking
Gaussian-like Spatial Priors for Articulated Tracking

Soren Hauberg, Stefan Sommer, Kim S. Pedersen

In Computer Vision – ECCV 2010, 6311, pages: 425-437, Lecture Notes in Computer Science, (Editors: Daniilidis, Kostas and Maragos, Petros and Paragios, Nikos), Springer Berlin Heidelberg, 2010 (inproceedings)

Publishers site Paper site Code PDF [BibTex]

Publishers site Paper site Code PDF [BibTex]


no image
Reach to grasp actions in rhesus macaques: Dimensionality reduction of hand, wrist, and upper arm motor subspaces using principal component analysis

Vargas-Irwin, C., Franquemont, L., Shakhnarovich, G., Yadollahpour, P., Black, M., Donoghue, J.

2010 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2010, Online (conference)

[BibTex]

[BibTex]


Layered image motion with explicit occlusions, temporal consistency, and depth ordering
Layered image motion with explicit occlusions, temporal consistency, and depth ordering

Sun, D., Sudderth, E., Black, M. J.

In Advances in Neural Information Processing Systems 23 (NIPS), pages: 2226-2234, MIT Press, 2010 (inproceedings)

Abstract
Layered models are a powerful way of describing natural scenes containing smooth surfaces that may overlap and occlude each other. For image motion estimation, such models have a long history but have not achieved the wide use or accuracy of non-layered methods. We present a new probabilistic model of optical flow in layers that addresses many of the shortcomings of previous approaches. In particular, we define a probabilistic graphical model that explicitly captures: 1) occlusions and disocclusions; 2) depth ordering of the layers; 3) temporal consistency of the layer segmentation. Additionally the optical flow in each layer is modeled by a combination of a parametric model and a smooth deviation based on an MRF with a robust spatial prior; the resulting model allows roughness in layers. Finally, a key contribution is the formulation of the layers using an image dependent hidden field prior based on recent models for static scene segmentation. The method achieves state-of-the-art results on the Middlebury benchmark and produces meaningful scene segmentations as well as detected occlusion regions.

main paper supplemental material paper and supplemental material in one pdf file Project Page [BibTex]


Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations
Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations

Stefan Sommer, Francois Lauze, Soren Hauberg, Mads Nielsen

In Computer Vision – ECCV 2010, 6316, pages: 43-56, (Editors: Daniilidis, Kostas and Maragos, Petros and Paragios, Nikos), Springer Berlin Heidelberg, 2010 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking
GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking

Rune Mollegaard Friborg, Soren Hauberg, Kenny Erleben

In The CVGPU workshop at European Conference on Computer Vision (ECCV) 2010, 2010 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

Pdf [BibTex]

Pdf [BibTex]


no image
Unsupervised learning of a low-dimensional non-linear representation of motor cortical neuronal ensemble activity using Spatio-Temporal Isomap

Kim, S., Tsoli, A., Jenkins, O., Simeral, J., Donoghue, J., Black, M.

2010 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2010, Online (conference)

[BibTex]

[BibTex]


3{D} Knowledge-Based Segmentation Using Pose-Invariant Higher-Order  Graphs
3D Knowledge-Based Segmentation Using Pose-Invariant Higher-Order Graphs

Wang, C., Teboul, O., Michel, F., Essafi, S., Paragios, N.

In International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Vision-Based Automated Recognition of Mice Home-Cage Behaviors.
Vision-Based Automated Recognition of Mice Home-Cage Behaviors.

Jhuang, H., Garrote, E., Edelman, N., Poggio, T., Steele, A., Serre, T.

Workshop: Visual Observation and Analysis of Animal and Insect Behavior, in conjunction with International Conference on Pattern Recognition (ICPR) , 2010 (conference)

pdf [BibTex]

pdf [BibTex]


Hands in action: real-time 3{D} reconstruction of hands in interaction with objects
Hands in action: real-time 3D reconstruction of hands in interaction with objects

Romero, J., Kjellström, H., Kragic, D.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 458-463, 2010 (inproceedings)

Pdf Project Page [BibTex]

Pdf Project Page [BibTex]


no image
Orientation and direction selectivity in the population code of the visual thalamus

Stanley, G., Jin, J., Wang, Y., Desbordes, G., Black, M., Alonso, J.

COSYNE, 2010 (conference)

[BibTex]

[BibTex]


Estimating Shadows with the Bright Channel Cue
Estimating Shadows with the Bright Channel Cue

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

In Color and Reflectance in Imaging and Computer Vision Workshop (CRICV) (in conjunction with ECCV 2010), 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Dense non-rigid surface registration using high-order graph matching
Dense non-rigid surface registration using high-order graph matching

Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Computational Mechanisms for the motion processing in visual area MT
Computational Mechanisms for the motion processing in visual area MT

Jhuang, H., Serre, T., Poggio, T.

Society for Neuroscience, 2010 (conference)

pdf [BibTex]

pdf [BibTex]


Spatio-Temporal Modeling of Grasping Actions
Spatio-Temporal Modeling of Grasping Actions

Romero, J., Feix, T., Kjellström, H., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 2103-2108, 2010 (inproceedings)

Pdf Project Page [BibTex]

Pdf Project Page [BibTex]

2009


Ball Joints for Marker-less Human Motion Capture
Ball Joints for Marker-less Human Motion Capture

Pons-Moll, G., Rosenhahn, B.

In IEEE Workshop on Applications of Computer Vision (WACV),, December 2009 (inproceedings)

pdf [BibTex]

2009

pdf [BibTex]


no image
Background Subtraction Based on Rank Constraint for Point Trajectories

Ahmad, A., Del Bue, A., Lima, P.

In pages: 1-3, October 2009 (inproceedings)

Abstract
This work deals with a background subtraction algorithm for a fish-eye lens camera having 3 degrees of freedom, 2 in translation and 1 in rotation. The core assumption in this algorithm is that the background is considered to be composed of a dominant static plane in the world frame. The novelty lies in developing a rank-constraint based background subtraction for equidistant projection model, a property of the fish-eye lens. A detail simulation result is presented to support the hypotheses explained in this paper.

link (url) [BibTex]

link (url) [BibTex]


Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images
Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images

Pons-Moll, G., Crosas, C., Tadmor, G., MacLeod, R., Rosenhahn, B., Brooks, D.

In IEEE Computers in Cardiology (CINC), September 2009 (inproceedings)

[BibTex]

[BibTex]