Header logo is ps


2003


Thumb xl iccv2003 copy
Image statistics and anisotropic diffusion

Scharr, H., Black, M. J., Haussecker, H.

In Int. Conf. on Computer Vision, pages: 840-847, October 2003 (inproceedings)

pdf [BibTex]

2003

pdf [BibTex]


Thumb xl switching2003
A switching Kalman filter model for the motor cortical coding of hand motion

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 2083-2086, September 2003 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl hedvig
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

pdf pdf from publisher code DOI [BibTex]

pdf pdf from publisher code DOI [BibTex]


Thumb xl delatorreijcvteaser
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl cviu91teaser
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

pdf [BibTex]

pdf [BibTex]


no image
A Gaussian mixture model for the motor cortical coding of hand motion

Wu, W., Mumford, D., Black, M. J., Gao, Y., Bienenstock, E., Donoghue, J. P.

Neural Control of Movement, Santa Barbara, CA, April 2003 (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 09.35.12
Connecting brains with machines: The neural control of 2D cursor movement

Black, M. J., Bienenstock, E., Donoghue, J. P., Serruya, M., Wu, W., Gao, Y.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 580-583, Capri, Italy, March 2003 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 09.44.01
A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions

Gao, Y., Black, M. J., Bienenstock, E., Wu, W., Donoghue, J. P.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 189-192, Capri, Italy, March 2003 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Accuracy of manual spike sorting: Results for the Utah intracortical array

Wood, F., Fellows, M., Vargas-Irwin, C., Black, M. J., Donoghue, J. P.

Program No. 279.2. 2003, Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2003, Online (conference)

abstract [BibTex]

abstract [BibTex]


no image
Specular flow and the perception of surface reflectance

Roth, S., Domini, F., Black, M. J.

Journal of Vision, 3 (9): 413a, 2003 (conference)

abstract poster [BibTex]

abstract poster [BibTex]


Thumb xl attractiveteaser
Attractive people: Assembling loose-limbed models using non-parametric belief propagation

Sigal, L., Isard, M. I., Sigelman, B. H., Black, M. J.

In Advances in Neural Information Processing Systems 16, NIPS, pages: 1539-1546, (Editors: S. Thrun and L. K. Saul and B. Schölkopf), MIT Press, 2003 (inproceedings)

Abstract
The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body models. To cope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphical model where the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is impractical and the random variables in our model must be continuous-valued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter. This framework facilitates the automatic initialization of the body-model from low level cues and is robust to occlusion of body parts and scene clutter.

pdf (color) pdf (black and white) [BibTex]

pdf (color) pdf (black and white) [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 09.48.31
Neural decoding of cursor motion using a Kalman filter

(Nominated: Best student paper)

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Shaikhouni, A., Donoghue, J. P.

In Advances in Neural Information Processing Systems 15, pages: 133-140, MIT Press, 2003 (inproceedings)

pdf [BibTex]

pdf [BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 09.54.19
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.33.56
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 09.50.58
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.06.33
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Thumb xl eccv2002hvg
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.29.56
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.03.10
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

2000


Thumb xl ijcv2000teaser
Probabilistic detection and tracking of motion boundaries

Black, M. J., Fleet, D. J.

Int. J. of Computer Vision, 38(3):231-245, July 2000 (article)

Abstract
We propose a Bayesian framework for representing and recognizing local image motion in terms of two basic models: translational motion and motion boundaries. Motion boundaries are represented using a non-linear generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We represent the posterior probability distribution over the model parameters given the image data using discrete samples. This distribution is propagated over time using a particle filtering algorithm. To efficiently represent such a high-dimensional space we initialize samples using the responses of a low-level motion discontinuity detector. The formulation and computational model provide a general probabilistic framework for motion estimation with multiple, non-linear, models.

pdf pdf from publisher Video [BibTex]

2000

pdf pdf from publisher Video [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 12.12.25
Stochastic tracking of 3D human figures using 2D image motion

(Winner of the 2010 Koenderink Prize for Fundamental Contributions in Computer Vision)

Sidenbladh, H., Black, M. J., Fleet, D.

In European Conference on Computer Vision, ECCV, pages: 702-718, LNCS 1843, Springer Verlag, Dublin, Ireland, June 2000 (inproceedings)

Abstract
A probabilistic method for tracking 3D articulated human figures in monocular image sequences is presented. Within a Bayesian framework, we define a generative model of image appearance, a robust likelihood function based on image gray level differences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model parameters is represented using a discrete set of samples and is propagated over time using particle filtering. The approach extends previous work on parameterized optical flow estimation to exploit a complex 3D articulated motion model. It also extends previous work on human motion tracking by including a perspective camera model, by modeling limb self occlusion, and by recovering 3D motion from a monocular sequence. The explicit posterior probability distribution represents ambiguities due to image matching, model singularities, and perspective projection. The method relies only on a frame-to-frame assumption of brightness constancy and hence is able to track people under changing viewpoints, in grayscale image sequences, and with complex unknown backgrounds.

pdf code [BibTex]

pdf code [BibTex]


no image
Functional analysis of human motion data

Ormoneit, D., Hastie, T., Black, M. J.

In In Proc. 5th World Congress of the Bernoulli Society for Probability and Mathematical Statistics and 63rd Annual Meeting of the Institute of Mathematical Statistics, Guanajuato, Mexico, May 2000 (inproceedings)

[BibTex]

[BibTex]


no image
Stochastic modeling and tracking of human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

Learning 2000, Snowbird, UT, April 2000 (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2012 12 12 um 11.40.47
A framework for modeling the appearance of 3D articulated figures

Sidenbladh, H., De la Torre, F., Black, M. J.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 368-375, Grenoble, France, March 2000 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.22.34
Design and use of linear models for image motion analysis

Fleet, D. J., Black, M. J., Yacoob, Y., Jepson, A. D.

Int. J. of Computer Vision, 36(3):171-193, 2000 (article)

Abstract
Linear parameterized models of optical flow, particularly affine models, have become widespread in image motion analysis. The linear model coefficients are straightforward to estimate, and they provide reliable estimates of the optical flow of smooth surfaces. Here we explore the use of parameterized motion models that represent much more varied and complex motions. Our goals are threefold: to construct linear bases for complex motion phenomena; to estimate the coefficients of these linear models; and to recognize or classify image motions from the estimated coefficients. We consider two broad classes of motions: i) generic “motion features” such as motion discontinuities and moving bars; and ii) non-rigid, object-specific, motions such as the motion of human mouths. For motion features we construct a basis of steerable flow fields that approximate the motion features. For object-specific motions we construct basis flow fields from example motions using principal component analysis. In both cases, the model coefficients can be estimated directly from spatiotemporal image derivatives with a robust, multi-resolution scheme. Finally, we show how these model coefficients can be use to detect and recognize specific motions such as occlusion boundaries and facial expressions.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.48.16
Robustly estimating changes in image appearance

Black, M. J., Fleet, D. J., Yacoob, Y.

Computer Vision and Image Understanding, 78(1):8-31, 2000 (article)

Abstract
We propose a generalized model of image “appearance change” in which brightness variation over time is represented as a probabilistic mixture of different causes. We define four generative models of appearance change due to (1) object or camera motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic changes” which are specific to the objects being viewed. These iconic changes include complex occlusion events and changes in the material properties of the objects. We develop a robust statistical framework for recovering these appearance changes in image sequences. This approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion in the presence of shadows and specular reflections.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]

1998


Thumb xl bildschirmfoto 2012 12 06 um 10.05.20
Summarization of video-taped presentations: Automatic analysis of motion and gesture

Ju, S. X., Black, M. J., Minneman, S., Kimber, D.

IEEE Trans. on Circuits and Systems for Video Technology, 8(5):686-696, September 1998 (article)

Abstract
This paper presents an automatic system for analyzing and annotating video sequences of technical talks. Our method uses a robust motion estimation technique to detect key frames and segment the video sequence into subsequences containing a single overhead slide. The subsequences are stabilized to remove motion that occurs when the speaker adjusts their slides. Any changes remaining between frames in the stabilized sequences may be due to speaker gestures such as pointing or writing, and we use active contours to automatically track these potential gestures. Given the constrained domain, we define a simple set of actions that can be recognized based on the active contour shape and motion. The recognized actions provide an annotation of the sequence that can be used to access a condensed version of the talk from a Web page.

pdf pdf from publisher DOI [BibTex]

1998

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 12.22.18
Robust anisotropic diffusion

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

IEEE Transactions on Image Processing, 7(3):421-432, March 1998 (article)

Abstract
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The edge-stopping; function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new edge-stopping; function based on Tukey's biweight robust estimator that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the line processes allows us to develop new anisotropic diffusion equations that result in a qualitative improvement in the continuity of edges

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.33.36
The Digital Office: Overview

Black, M., Berard, F., Jepson, A., Newman, W., Saund, E., Socher, G., Taylor, M.

In AAAI Spring Symposium on Intelligent Environments, pages: 1-6, Stanford, March 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.46.31
A framework for modeling appearance change in image sequences

Black, M. J., Fleet, D. J., Yacoob, Y.

In Sixth International Conf. on Computer Vision, ICCV’98, pages: 660-667, Mumbai, India, January 1998 (inproceedings)

Abstract
Image "appearance" may change over time due to a variety of causes such as 1) object or camera motion; 2) generic photometric events including variations in illumination (e.g. shadows) and specular reflections; and 3) "iconic changes" which are specific to the objects being viewed and include complex occlusion events and changes in the material properties of the objects. We propose a general framework for representing and recovering these "appearance changes" in an image sequence as a "mixture" of different causes. The approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion.

pdf video [BibTex]

pdf video [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.49.49
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

In Sixth International Conf. on Computer Vision, ICCV’98, pages: 120-127, Mumbai, India, January 1998 (inproceedings)

Abstract
A framework for modeling and recognition of temporal activities is proposed. The modeling of sets of exemplar activities is achieved by parameterizing their representation in the form of principal components. Recognition of spatio-temporal variants of modeled activities is achieved by parameterizing the search in the space of admissible transformations that the activities can undergo. Experiments on recognition of articulated and deformable object motion from image motion parameters are presented.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.23.21
Motion feature detection using steerable flow fields

Fleet, D. J., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-98, pages: 274-281, IEEE, Santa Barbara, CA, 1998 (inproceedings)

Abstract
The estimation and detection of occlusion boundaries and moving bars are important and challenging problems in image sequence analysis. Here, we model such motion features as linear combinations of steerable basis flow fields. These models constrain the interpretation of image motion, and are used in the same way as translational or affine motion models. We estimate the subspace coefficients of the motion feature models directly from spatiotemporal image derivatives using a robust regression method. From the subspace coefficients we detect the presence of a motion feature and solve for the orientation of the feature and the relative velocities of the surfaces. Our method does not require the prior computation of optical flow and recovers accurate estimates of orientation and velocity.

pdf [BibTex]

pdf [BibTex]


Thumb xl paybotteaser
PLAYBOT: A visually-guided robot for physically disabled children

Tsotsos, J. K., Verghese, G., Dickinson, S., Jenkin, M., Jepson, A., Milios, E., Nuflo, F., Stevenson, S., Black, M., Metaxas, D., Culhane, S., Ye, Y., Mann, R.

Image & Vision Computing, Special Issue on Vision for the Disabled, 16(4):275-292, 1998 (article)

Abstract
This paper overviews the PLAYBOT project, a long-term, large-scale research program whose goal is to provide a directable robot which may enable physically disabled children to access and manipulate toys. This domain is the first test domain, but there is nothing inherent in the design of PLAYBOT that prohibits its extension to other tasks. The research is guided by several important goals: vision is the primary sensor; vision is task directed; the robot must be able to visually search its environment; object and event recognition are basic capabilities; environments must be natural and dynamic; users and environments are assumed to be unpredictable; task direction and reactivity must be smoothly integrated; and safety is of high importance. The emphasis of the research has been on vision for the robot this is the most challenging research aspect and the major bottleneck to the development of intelligent robots. Since the control framework is behavior-based, the visual capabilities of PLAYBOT are described in terms of visual behaviors. Many of the components of PLAYBOT are briefly described and several examples of implemented sub-systems are shown. The paper concludes with a description of the current overall system implementation, and a complete example of PLAYBOT performing a simple task.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.18.33
Visual surveillance of human activity

L. Davis, S. F., Harwood, D., Yacoob, Y., Hariatoglu, I., Black, M.

In Asian Conference on Computer Vision, ACCV, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.29.19
A Probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions

Black, M. J., Jepson, A. D.

In European Conf. on Computer Vision, ECCV-98, pages: 909-924, Freiburg, Germany, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 12.33.38
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

International Journal of Computer Vision, 26(1):63-84, 1998 (article)

Abstract
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image reconstruction of standard eigenspace techniques has a number of problems and we reformulate the reconstruction problem as one of robust estimation. Second we define a “subspace constancy assumption” that allows us to exploit techniques for parameterized optical flow estimation to simultaneously solve for the view of an object and the affine transformation between the eigenspace and the image. To account for large affine transformations between the eigenspace and the image we define a multi-scale eigenspace representation and a coarse-to-fine matching strategy. Finally, we use these techniques to track objects over long image sequences in which the objects simultaneously undergo both affine image motions and changes of view. In particular we use this “EigenTracking” technique to track and recognize the gestures of a moving hand.

pdf pdf from publisher video [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.40.25
Recognizing temporal trajectories using the Condensation algorithm

Black, M. J., Jepson, A. D.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 16-21, Nara, Japan, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cipollabook
Looking at people in action - An overview

Yacoob, Y., Davis, L. S., Black, M., Gavrila, D., Horprasert, T., Morimoto, C.

In Computer Vision for Human–Machine Interaction, (Editors: R. Cipolla and A. Pentland), Cambridge University Press, 1998 (incollection)

publisher site google books [BibTex]

publisher site google books [BibTex]

1997


Thumb xl sharpening
Robust anisotropic diffusion and sharpening of scalar and vector images

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

In Int. Conf. on Image Processing, ICIP, 1, pages: 263-266, Vol. 1, Santa Barbara, CA, October 1997 (inproceedings)

Abstract
Relations between anisotropic diffusion and robust statistics are described. We show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edge-stopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in the image. We extend the framework to vector-valued images and show applications to robust image sharpening.

pdf publisher site [BibTex]

1997

pdf publisher site [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.31.38
Robust anisotropic diffusion: Connections between robust statistics, line processing, and anisotropic diffusion

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

In Scale-Space Theory in Computer Vision, Scale-Space’97, pages: 323-326, LNCS 1252, Springer Verlag, Utrecht, the Netherlands, July 1997 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.05.56
Learning parameterized models of image motion

Black, M. J., Yacoob, Y., Jepson, A. D., Fleet, D. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-97, pages: 561-567, Puerto Rico, June 1997 (inproceedings)

Abstract
A framework for learning parameterized models of optical flow from image sequences is presented. A class of motions is represented by a set of orthogonal basis flow fields that are computed from a training set using principal component analysis. Many complex image motions can be represented by a linear combination of a small number of these basis flows. The learned motion models may be used for optical flow estimation and for model-based recognition. For optical flow estimation we describe a robust, multi-resolution scheme for directly computing the parameters of the learned flow models from image derivatives. As examples we consider learning motion discontinuities, non-rigid motion of human mouths, and articulated human motion.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.13.51
Analysis of gesture and action in technical talks for video indexing

Ju, S. X., Black, M. J., Minneman, S., Kimber, D.

In IEEE Conf. on Computer Vision and Pattern Recognition, pages: 595-601, CVPR-97, Puerto Rico, June 1997 (inproceedings)

Abstract
In this paper, we present an automatic system for analyzing and annotating video sequences of technical talks. Our method uses a robust motion estimation technique to detect key frames and segment the video sequence into subsequences containing a single overhead slide. The subsequences are stabilized to remove motion that occurs when the speaker adjusts their slides. Any changes remaining between frames in the stabilized sequences may be due to speaker gestures such as pointing or writing and we use active contours to automatically track these potential gestures. Given the constrained domain we define a simple ``vocabulary'' of actions which can easily be recognized based on the active contour shape and motion. The recognized actions provide a rich annotation of the sequence that can be used to access a condensed version of the talk from a web page.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.36.36
Modeling appearance change in image sequences

Black, M. J., Yacoob, Y., Fleet, D. J.

In Advances in Visual Form Analysis, pages: 11-20, Proceedings of the Third International Workshop on Visual Form, Capri, Italy, May 1997 (inproceedings)

abstract [BibTex]

abstract [BibTex]


Thumb xl yasersmile
Recognizing facial expressions in image sequences using local parameterized models of image motion

Black, M. J., Yacoob, Y.

Int. Journal of Computer Vision, 25(1):23-48, 1997 (article)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust, and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performed with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

pdf pdf from publisher abstract video [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 11.00.33
Recognizing human motion using parameterized models of optical flow

Black, M. J., Yacoob, Y., Ju, X. S.

In Motion-Based Recognition, pages: 245-269, (Editors: Mubarak Shah and Ramesh Jain,), Kluwer Academic Publishers, Boston, MA, 1997 (incollection)

pdf [BibTex]

pdf [BibTex]

1993


Thumb xl bildschirmfoto 2013 01 14 um 11.48.36
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

pdf abstract tech report [BibTex]

1993

pdf abstract tech report [BibTex]