Header logo is ps


2002


Inferring hand motion from multi-cell recordings in motor cortex using a {Kalman} filter
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Probabilistic inference of hand motion from neural activity in motor cortex
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

Abstract
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides train- ing data of neural firing conditioned on hand kinematics. We learn a non- parametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non- Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is com- pared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.

pdf [BibTex]

pdf [BibTex]


Automatic detection and tracking of human motion with a view-based representation
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


A layered motion representation with occlusion and compact spatial support
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Implicit probabilistic models of human motion for synthesis and tracking
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial modeling
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

2000


Probabilistic detection and tracking of motion boundaries
Probabilistic detection and tracking of motion boundaries

Black, M. J., Fleet, D. J.

Int. J. of Computer Vision, 38(3):231-245, July 2000 (article)

Abstract
We propose a Bayesian framework for representing and recognizing local image motion in terms of two basic models: translational motion and motion boundaries. Motion boundaries are represented using a non-linear generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We represent the posterior probability distribution over the model parameters given the image data using discrete samples. This distribution is propagated over time using a particle filtering algorithm. To efficiently represent such a high-dimensional space we initialize samples using the responses of a low-level motion discontinuity detector. The formulation and computational model provide a general probabilistic framework for motion estimation with multiple, non-linear, models.

pdf pdf from publisher Video [BibTex]

2000

pdf pdf from publisher Video [BibTex]


Stochastic tracking of {3D} human figures using {2D} image motion
Stochastic tracking of 3D human figures using 2D image motion

(Winner of the 2010 Koenderink Prize for Fundamental Contributions in Computer Vision)

Sidenbladh, H., Black, M. J., Fleet, D.

In European Conference on Computer Vision, ECCV, pages: 702-718, LNCS 1843, Springer Verlag, Dublin, Ireland, June 2000 (inproceedings)

Abstract
A probabilistic method for tracking 3D articulated human figures in monocular image sequences is presented. Within a Bayesian framework, we define a generative model of image appearance, a robust likelihood function based on image gray level differences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model parameters is represented using a discrete set of samples and is propagated over time using particle filtering. The approach extends previous work on parameterized optical flow estimation to exploit a complex 3D articulated motion model. It also extends previous work on human motion tracking by including a perspective camera model, by modeling limb self occlusion, and by recovering 3D motion from a monocular sequence. The explicit posterior probability distribution represents ambiguities due to image matching, model singularities, and perspective projection. The method relies only on a frame-to-frame assumption of brightness constancy and hence is able to track people under changing viewpoints, in grayscale image sequences, and with complex unknown backgrounds.

pdf code [BibTex]

pdf code [BibTex]


no image
Functional analysis of human motion data

Ormoneit, D., Hastie, T., Black, M. J.

In In Proc. 5th World Congress of the Bernoulli Society for Probability and Mathematical Statistics and 63rd Annual Meeting of the Institute of Mathematical Statistics, Guanajuato, Mexico, May 2000 (inproceedings)

[BibTex]

[BibTex]


no image
Stochastic modeling and tracking of human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

Learning 2000, Snowbird, UT, April 2000 (conference)

abstract [BibTex]

abstract [BibTex]


A framework for modeling the appearance of {3D} articulated figures
A framework for modeling the appearance of 3D articulated figures

Sidenbladh, H., De la Torre, F., Black, M. J.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 368-375, Grenoble, France, March 2000 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Design and use of linear models for image motion analysis
Design and use of linear models for image motion analysis

Fleet, D. J., Black, M. J., Yacoob, Y., Jepson, A. D.

Int. J. of Computer Vision, 36(3):171-193, 2000 (article)

Abstract
Linear parameterized models of optical flow, particularly affine models, have become widespread in image motion analysis. The linear model coefficients are straightforward to estimate, and they provide reliable estimates of the optical flow of smooth surfaces. Here we explore the use of parameterized motion models that represent much more varied and complex motions. Our goals are threefold: to construct linear bases for complex motion phenomena; to estimate the coefficients of these linear models; and to recognize or classify image motions from the estimated coefficients. We consider two broad classes of motions: i) generic “motion features” such as motion discontinuities and moving bars; and ii) non-rigid, object-specific, motions such as the motion of human mouths. For motion features we construct a basis of steerable flow fields that approximate the motion features. For object-specific motions we construct basis flow fields from example motions using principal component analysis. In both cases, the model coefficients can be estimated directly from spatiotemporal image derivatives with a robust, multi-resolution scheme. Finally, we show how these model coefficients can be use to detect and recognize specific motions such as occlusion boundaries and facial expressions.

pdf [BibTex]

pdf [BibTex]


Robustly estimating changes in image appearance
Robustly estimating changes in image appearance

Black, M. J., Fleet, D. J., Yacoob, Y.

Computer Vision and Image Understanding, 78(1):8-31, 2000 (article)

Abstract
We propose a generalized model of image “appearance change” in which brightness variation over time is represented as a probabilistic mixture of different causes. We define four generative models of appearance change due to (1) object or camera motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic changes” which are specific to the objects being viewed. These iconic changes include complex occlusion events and changes in the material properties of the objects. We develop a robust statistical framework for recovering these appearance changes in image sequences. This approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion in the presence of shadows and specular reflections.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]

1994


Estimating multiple independent motions in segmented images using parametric models with local deformations
Estimating multiple independent motions in segmented images using parametric models with local deformations

Black, M. J., Jepson, A.

In Workshop on Non-rigid and Articulate Motion, pages: 220-227, Austin, Texas, November 1994 (inproceedings)

pdf abstract [BibTex]

1994

pdf abstract [BibTex]


Time to contact from active tracking of motion boundaries
Time to contact from active tracking of motion boundaries

Ju, X., Black, M. J.

In Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision, pages: 26-37, Proc. SPIE 2354, Boston, Massachusetts, November 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


A computational and evolutionary perspective on the role of representation in computer vision
A computational and evolutionary perspective on the role of representation in computer vision

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):65-73, July 1994 (article)

Abstract
Recently, the assumed goal of computer vision, reconstructing a representation of the scene, has been critcized as unproductive and impractical. Critics have suggested that the reconstructive approach should be supplanted by a new purposive approach that emphasizes functionality and task driven perception at the cost of general vision. In response to these arguments, we claim that the recovery paradigm central to the reconstructive approach is viable, and, moreover, provides a promising framework for understanding and modeling general purpose vision in humans and machines. An examination of the goals of vision from an evolutionary perspective and a case study involving the recovery of optic flow support this hypothesis. In particular, while we acknowledge that there are instances where the purposive approach may be appropriate, these are insufficient for implementing the wide range of visual tasks exhibited by humans (the kind of flexible vision system presumed to be an end-goal of artificial intelligence). Furthermore, there are instances, such as recent work on the estimation of optic flow, where the recovery paradigm may yield useful and robust results. Thus, contrary to certain claims, the purposive approach does not obviate the need for recovery and reconstruction of flexible representations of the world.

pdf [BibTex]

pdf [BibTex]


Reconstruction and purpose
Reconstruction and purpose

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):113-118, July 1994 (article)

pdf [BibTex]

pdf [BibTex]


The outlier process: Unifying line processes and robust statistics
The outlier process: Unifying line processes and robust statistics

Black, M., Rangarajan, A.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’94, pages: 15-22, Seattle, WA, June 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


Recursive non-linear estimation of discontinuous flow fields
Recursive non-linear estimation of discontinuous flow fields

Black, M.

In Proc. Third European Conf. on Computer Vision, ECCV’94,, pages: 138-145, LNCS 800, Springer Verlag, Sweden, May 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

Abstract
The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions.

pdf tech report [BibTex]

1993

pdf tech report [BibTex]


A framework for the robust estimation of optical flow
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

pdf [BibTex]

pdf [BibTex]


Action, representation, and purpose: Re-evaluating the foundations of computational vision
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1992


Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Combining intensity and motion for incremental segmentation and tracking over long image sequences
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]


Robust Incremental Optical Flow
Robust Incremental Optical Flow

Black, M. J.

Yale University, Department of Computer Science, New Haven, CT, 1992, Research Report YALEU-DCS-RR-923 (phdthesis)

pdf Old C code (dense) Old C code (regression) Modern Code (Matlab) [BibTex]

pdf Old C code (dense) Old C code (regression) Modern Code (Matlab) [BibTex]