Header logo is ps


2004


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

pdf [BibTex]

2004

pdf [BibTex]


Closed-loop neural control of cursor motion using a {Kalman} filter
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


The dense estimation of motion and appearance in layers
The dense estimation of motion and appearance in layers

Yalcin, H., Black, M. J., Fablet, R.

In IEEE Workshop on Image and Video Registration, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


{3D} human limb detection using space carving and multi-view eigen models
3D human limb detection using space carving and multi-view eigen models

Bhatia, S., Sigal, L., Isard, M., Black, M. J.

In IEEE Workshop on Articulated and Nonrigid Motion, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


On the variability of manual spike sorting
On the variability of manual spike sorting

Wood, F., Black, M. J., Vargas-Irwin, C., Fellows, M., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):912-918, June 2004 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Tracking loose-limbed people
Tracking loose-limbed people

Sigal, L., Bhatia, S., Roth, S., Black, M. J., Isard, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 421-428, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Modeling and decoding motor cortical activity using a switching {Kalman} filter
Modeling and decoding motor cortical activity using a switching Kalman filter

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):933-942, June 2004 (article)

Abstract
We present a switching Kalman filter model for the real-time inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A “hidden state” models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the non-Gaussian nature of firing rates, and can cope with crudely sorted neural data common in on-line prosthetic applications.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Gibbs likelihoods for {Bayesian} tracking
Gibbs likelihoods for Bayesian tracking

Roth, S., Sigal, L., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 886-893, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Development of neural motor prostheses for humans
Development of neural motor prostheses for humans

Donoghue, J., Nurmikko, A., Friehs, G., Black, M.

In Advances in Clinical Neurophysiology, (Editors: Hallett, M. and Phillips, L.H. and Schomer, D.L. and Massey, J.M.), Supplements to Clinical Neurophysiology Vol. 57, 2004 (incollection)

pdf [BibTex]

pdf [BibTex]


no image
A direct brain-machine interface for 2D cursor control using a Kalman filter

Shaikhouni, A., Wu, W., Moris, D. S., Donoghue, J. P., Black, M. J.

Society for Neuroscience, 2004, Online (conference)

abstract [BibTex]

abstract [BibTex]

2001


Dynamic coupled component analysis
Dynamic coupled component analysis

De la Torre, F., Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’01, 2, pages: 643-650, IEEE, Kauai, Hawaii, December 2001 (inproceedings)

pdf [BibTex]

2001

pdf [BibTex]


Robust principal component analysis for computer vision
Robust principal component analysis for computer vision

De la Torre, F., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 362-369, Vancouver, BC, USA, 2001 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Learning image statistics for {Bayesian} tracking
Learning image statistics for Bayesian tracking

Sidenbladh, H., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 709-716, Vancouver, BC, USA, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Encoding/decoding of arm kinematics from simultaneously recorded MI neurons

Gao, Y., Bienenstock, E., Black, M., Shoham, S., Serruya, M., Donoghue, J.

Society for Neuroscience Abst. Vol. 27, Program No. 572.14, 2001 (conference)

abstract [BibTex]

abstract [BibTex]


Learning and tracking cyclic human motion
Learning and tracking cyclic human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

In Advances in Neural Information Processing Systems 13, NIPS, pages: 894-900, (Editors: Leen, Todd K. and Dietterich, Thomas G. and Tresp, Volker), The MIT Press, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Robust estimation of multiple surface shapes from occluded textures
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

abstract [BibTex]

abstract [BibTex]


Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

video abstract [BibTex]

video abstract [BibTex]


Image segmentation using robust mixture models
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

pdf on-line at USPTO [BibTex]


Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

abstract [BibTex]

abstract [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

Abstract
The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions.

pdf tech report [BibTex]

1993

pdf tech report [BibTex]


A framework for the robust estimation of optical flow
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

pdf [BibTex]

pdf [BibTex]


Action, representation, and purpose: Re-evaluating the foundations of computational vision
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1990


A model for the detection of motion over time
A model for the detection of motion over time

Black, M. J., Anandan, P.

In Proc. Int. Conf. on Computer Vision, ICCV-90, pages: 33-37, Osaka, Japan, December 1990 (inproceedings)

Abstract
We propose a model for the recovery of visual motion fields from image sequences. Our model exploits three constraints on the motion of a patch in the environment: i) Data Conservation: the intensity structure corresponding to an environmental surface patch changes gradually over time; ii) Spatial Coherence: since surfaces have spatial extent neighboring points have similar motions; iii) Temporal Coherence: the direction and velocity of motion for a surface patch changes gradually. The formulation of the constraints takes into account the possibility of multiple motions at a particular location. We also present a highly parallel computational model for realizing these constraints in which computation occurs locally, knowledge about the motion increases over time, and occlusion and disocclusion boundaries are estimated. An implementation of the model using a stochastic temporal updating scheme is described. Experiments with both synthetic and real imagery are presented.

pdf [BibTex]

1990

pdf [BibTex]


Constraints for the early detection of discontinuity from motion
Constraints for the early detection of discontinuity from motion

Black, M. J., Anandan, P.

In Proc. National Conf. on Artificial Intelligence, AAAI-90, pages: 1060-1066, Boston, MA, 1990 (inproceedings)

Abstract
Surface discontinuities are detected in a sequence of images by exploiting physical constraints at early stages in the processing of visual motion. To achieve accurate early discontinuity detection we exploit five physical constraints on the presence of discontinuities: i) the shape of the sum of squared differences (SSD) error surface in the presence of surface discontinuities; ii) the change in the shape of the SSD surface due to relative surface motion; iii) distribution of optic flow in a neighborhood of a discontinuity; iv) spatial consistency of discontinuities; V) temporal consistency of discontinuities. The constraints are described, and experimental results on sequences of real and synthetic images are presented. The work has applications in the recovery of environmental structure from motion and in the generation of dense optic flow fields.

pdf [BibTex]

pdf [BibTex]