Header logo is ps


2020


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

2020

pdf [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

Paper Publisher Version poster link (url) DOI [BibTex]

1999


Edges as outliers: Anisotropic smoothing using local image statistics
Edges as outliers: Anisotropic smoothing using local image statistics

Black, M. J., Sapiro, G.

In Scale-Space Theories in Computer Vision, Second Int. Conf., Scale-Space ’99, pages: 259-270, LNCS 1682, Springer, Corfu, Greece, September 1999 (inproceedings)

Abstract
Edges are viewed as statistical outliers with respect to local image gradient magnitudes. Within local image regions we compute a robust statistical measure of the gradient variation and use this in an anisotropic diffusion framework to determine a spatially varying "edge-stopping" parameter σ. We show how to determine this parameter for two edge-stopping functions described in the literature (Perona-Malik and the Tukey biweight). Smoothing of the image is related the local texture and in regions of low texture, small gradient values may be treated as edges whereas in regions of high texture, large gradient magnitudes are necessary before an edge is preserved. Intuitively these results have similarities with human perceptual phenomena such as masking and "popout". Results are shown on a variety of standard images.

pdf [BibTex]

1999

pdf [BibTex]


Probabilistic detection and tracking of motion discontinuities
Probabilistic detection and tracking of motion discontinuities

(Marr Prize, Honorable Mention)

Black, M. J., Fleet, D. J.

In Int. Conf. on Computer Vision, ICCV-99, pages: 551-558, ICCV, Corfu, Greece, September 1999 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Artscience Sciencart
Artscience Sciencart

Black, M. J., Levy, D., PamelaZ,

In Art and Innovation: The Xerox PARC Artist-in-Residence Program, pages: 244-300, (Editors: Harris, C.), MIT-Press, 1999 (incollection)

Abstract
One of the effects of the PARC Artist In Residence (PAIR) program has been to expose the strong connections between scientists and artists. Both do what they do because they need to do it. They are often called upon to justify their work in order to be allowed to continue to do it. They need to justify it to funders, to sponsoring institutions, corporations, the government, the public. They publish papers, teach workshops, and write grants touting the educational or health benefits of what they do. All of these things are to some extent valid, but the fact of the matter is: artists and scientists do their work because they are driven to do it. They need to explore and create.

This chapter attempts to give a flavor of one multi-way "PAIRing" between performance artist PamelaZ and two PARC researchers, Michael Black and David Levy. The three of us paired up because we found each other interesting. We chose each other. While most artists in the program are paired with a single researcher Pamela jokingly calls herself a bigamist for choosing two PAIR "husbands" with different backgrounds and interests.

There are no "rules" to the PAIR program; no one told us what to do with our time. Despite this we all had a sense that we needed to produce something tangible during Pamela's year-long residency. In fact, Pamela kept extending her residency because she did not feel as though we had actually made anything concrete. The interesting thing was that all along we were having great conversations, some of which Pamela recorded. What we did not see at the time was that it was these conversations between artists and scientists that are at the heart of the PAIR program and that these conversations were changing the way we thought about our own work and the relationships between science and art.

To give these conversations their due, and to allow the reader into our PAIR interactions, we include two of our many conversations in this chapter.

[BibTex]

[BibTex]


Parameterized modeling and recognition of activities
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

Computer Vision and Image Understanding, 73(2):232-247, 1999 (article)

Abstract
In this paper we consider a class of human activities—atomic activities—which can be represented as a set of measurements over a finite temporal window (e.g., the motion of human body parts during a walking cycle) and which has a relatively small space of variations in performance. A new approach for modeling and recognition of atomic activities that employs principal component analysis and analytical global transformations is proposed. The modeling of sets of exemplar instances of activities that are similar in duration and involve similar body part motions is achieved by parameterizing their representation using principal component analysis. The recognition of variants of modeled activities is achieved by searching the space of admissible parameterized transformations that these activities can undergo. This formulation iteratively refines the recognition of the class to which the observed activity belongs and the transformation parameters that relate it to the model in its class. We provide several experiments on recognition of articulated and deformable human motions from image motion parameters.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Explaining optical flow events with parameterized spatio-temporal models
Explaining optical flow events with parameterized spatio-temporal models

Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’99, pages: 326-332, IEEE, Fort Collins, CO, 1999 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]

1992


Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Combining intensity and motion for incremental segmentation and tracking over long image sequences
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]


Robust Incremental Optical Flow
Robust Incremental Optical Flow

Black, M. J.

Yale University, Department of Computer Science, New Haven, CT, 1992, Research Report YALEU-DCS-RR-923 (phdthesis)

pdf Old C code (dense) Old C code (regression) Modern Code (Matlab) [BibTex]

pdf Old C code (dense) Old C code (regression) Modern Code (Matlab) [BibTex]