Header logo is ps


2020


Machine learning systems and methods of estimating body shape from images
Machine learning systems and methods of estimating body shape from images

Black, M., Rachlin, E., Heron, N., Loper, M., Weiss, A., Hu, K., Hinkle, T., Kristiansen, M.

(US Patent 10,679,046), June 2020 (patent)

Abstract
Disclosed is a method including receiving an input image including a human, predicting, based on a convolutional neural network that is trained using examples consisting of pairs of sensor data, a corresponding body shape of the human and utilizing the corresponding body shape predicted from the convolutional neural network as input to another convolutional neural network to predict additional body shape metrics.

[BibTex]

2020

[BibTex]


Machine learning systems and methods for augmenting images
Machine learning systems and methods for augmenting images

Black, M., Rachlin, E., Lee, E., Heron, N., Loper, M., Weiss, A., Smith, D.

(US Patent 10,529,137 B1), January 2020 (patent)

Abstract
Disclosed is a method including receiving visual input comprising a human within a scene, detecting a pose associated with the human using a trained machine learning model that detects human poses to yield a first output, estimating a shape (and optionally a motion) associated with the human using a trained machine learning model associated that detects shape (and optionally motion) to yield a second output, recognizing the scene associated with the visual input using a trained convolutional neural network which determines information about the human and other objects in the scene to yield a third output, and augmenting reality within the scene by leveraging one or more of the first output, the second output, and the third output to place 2D and/or 3D graphics in the scene.

[BibTex]

[BibTex]

2006


Products of ``Edge-perts''
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

2006

pdf [BibTex]

2002


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

2002

pdf [BibTex]

1999


Artscience Sciencart
Artscience Sciencart

Black, M. J., Levy, D., PamelaZ,

In Art and Innovation: The Xerox PARC Artist-in-Residence Program, pages: 244-300, (Editors: Harris, C.), MIT-Press, 1999 (incollection)

Abstract
One of the effects of the PARC Artist In Residence (PAIR) program has been to expose the strong connections between scientists and artists. Both do what they do because they need to do it. They are often called upon to justify their work in order to be allowed to continue to do it. They need to justify it to funders, to sponsoring institutions, corporations, the government, the public. They publish papers, teach workshops, and write grants touting the educational or health benefits of what they do. All of these things are to some extent valid, but the fact of the matter is: artists and scientists do their work because they are driven to do it. They need to explore and create.

This chapter attempts to give a flavor of one multi-way "PAIRing" between performance artist PamelaZ and two PARC researchers, Michael Black and David Levy. The three of us paired up because we found each other interesting. We chose each other. While most artists in the program are paired with a single researcher Pamela jokingly calls herself a bigamist for choosing two PAIR "husbands" with different backgrounds and interests.

There are no "rules" to the PAIR program; no one told us what to do with our time. Despite this we all had a sense that we needed to produce something tangible during Pamela's year-long residency. In fact, Pamela kept extending her residency because she did not feel as though we had actually made anything concrete. The interesting thing was that all along we were having great conversations, some of which Pamela recorded. What we did not see at the time was that it was these conversations between artists and scientists that are at the heart of the PAIR program and that these conversations were changing the way we thought about our own work and the relationships between science and art.

To give these conversations their due, and to allow the reader into our PAIR interactions, we include two of our many conversations in this chapter.

[BibTex]

1999

[BibTex]

1997


Recognizing human motion using parameterized models of optical flow
Recognizing human motion using parameterized models of optical flow

Black, M. J., Yacoob, Y., Ju, X. S.

In Motion-Based Recognition, pages: 245-269, (Editors: Mubarak Shah and Ramesh Jain,), Kluwer Academic Publishers, Boston, MA, 1997 (incollection)

pdf [BibTex]

1997

pdf [BibTex]