Header logo is ps


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

publisher link (url) [BibTex]


publisher link (url) [BibTex]

Thumb xl dissertation teaser scaled
Human Pose Estimation from Video and Inertial Sensors

Pons-Moll, G.

Ph.D Thesis, -, 2014 (book)

The analysis and understanding of human movement is central to many applications such as sports science, medical diagnosis and movie production. The ability to automatically monitor human activity in security sensitive areas such as airports, lobbies or borders is of great practical importance. Furthermore, automatic pose estimation from images leverages the processing and understanding of massive digital libraries available on the Internet. We build upon a model based approach where the human shape is modelled with a surface mesh and the motion is parametrized by a kinematic chain. We then seek for the pose of the model that best explains the available observations coming from different sensors. In a first scenario, we consider a calibrated mult-iview setup in an indoor studio. To obtain very accurate results, we propose a novel tracker that combines information coming from video and a small set of Inertial Measurement Units (IMUs). We do so by locally optimizing a joint energy consisting of a term that measures the likelihood of the video data and a term for the IMU data. This is the first work to successfully combine video and IMUs information for full body pose estimation. When compared to commercial marker based systems the proposed solution is more cost efficient and less intrusive for the user. In a second scenario, we relax the assumption of an indoor studio and we tackle outdoor scenes with background clutter, illumination changes, large recording volumes and difficult motions of people interacting with objects. Again, we combine information from video and IMUs. Here we employ a particle based optimization approach that allows us to be more robust to tracking failures. To satisfy the orientation constraints imposed by the IMUs, we derive an analytic Inverse Kinematics (IK) procedure to sample from the manifold of valid poses. The generated hypothesis come from a lower dimensional manifold and therefore the computational cost can be reduced. Experiments on challenging sequences suggest the proposed tracker can be applied to capture in outdoor scenarios. Furthermore, the proposed IK sampling procedure can be used to integrate any kind of constraints derived from the environment. Finally, we consider the most challenging possible scenario: pose estimation of monocular images. Here, we argue that estimating the pose to the degree of accuracy as in an engineered environment is too ambitious with the current technology. Therefore, we propose to extract meaningful semantic information about the pose directly from image features in a discriminative fashion. In particular, we introduce posebits which are semantic pose descriptors about the geometric relationships between parts in the body. The experiments show that the intermediate step of inferring posebits from images can improve pose estimation from monocular imagery. Furthermore, posebits can be very useful as input feature for many computer vision algorithms.

pdf [BibTex]

Thumb xl patentc
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

pdf on-line at USPTO [BibTex]