Header logo is ps


2012


Virtual Human Bodies with Clothing and Hair: From Images to Animation
Virtual Human Bodies with Clothing and Hair: From Images to Animation

Guan, P.

Brown University, Department of Computer Science, December 2012 (phdthesis)

pdf [BibTex]

2012

pdf [BibTex]


Coregistration: Supplemental Material
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf [BibTex]

pdf [BibTex]


Lie Bodies: A Manifold Representation of {3D} Human Shape. Supplemental Material
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


MPI-Sintel Optical Flow Benchmark: Supplemental Material
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


From Pixels to Layers: Joint Motion Estimation and Segmentation
From Pixels to Layers: Joint Motion Estimation and Segmentation

Sun, D.

Brown University, Department of Computer Science, July 2012 (phdthesis)

pdf [BibTex]

pdf [BibTex]


An Analysis of Successful Approaches to Human Pose Estimation
An Analysis of Successful Approaches to Human Pose Estimation

Lassner, C.

An Analysis of Successful Approaches to Human Pose Estimation, University of Augsburg, University of Augsburg, May 2012 (mastersthesis)

Abstract
The field of Human Pose Estimation is developing fast and lately leaped forward with the release of the Kinect system. That system reaches a very good perfor- mance for pose estimation using 3D scene information, however pose estimation from 2D color images is not solved reliably yet. There is a vast amount of pub- lications trying to reach this aim, but no compilation of important methods and solution strategies. The aim of this thesis is to fill this gap: it gives an introductory overview over important techniques by analyzing four current (2012) publications in detail. They are chosen such, that during their analysis many frequently used techniques for Human Pose Estimation can be explained. The thesis includes two introductory chapters with a definition of Human Pose Estimation and exploration of the main difficulties, as well as a detailed explanation of frequently used methods. A final chapter presents some ideas on how parts of the analyzed approaches can be recombined and shows some open questions that can be tackled in future work. The thesis is therefore a good entry point to the field of Human Pose Estimation and enables the reader to get an impression of the current state-of-the-art.

pdf [BibTex]

pdf [BibTex]


Exploiting pedestrian interaction via global optimization and social behaviors
Exploiting pedestrian interaction via global optimization and social behaviors

Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.

In Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis, Springer, April 2012 (incollection)

pdf [BibTex]

pdf [BibTex]


HUMIM Software for Articulated Tracking
HUMIM Software for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

(01/2012), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

Code PDF [BibTex]

Code PDF [BibTex]


A geometric framework for statistics on trees
A geometric framework for statistics on trees

Aasa Feragen, Mads Nielsen, Soren Hauberg, Pechin Lo, Marleen de Bruijne, Francois Lauze

(11/02), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

PDF [BibTex]

PDF [BibTex]


Data-driven Manifolds for Outdoor Motion Capture
Data-driven Manifolds for Outdoor Motion Capture

Pons-Moll, G., Leal-Taix’e, L., Gall, J., Rosenhahn, B.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 305-328, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

video publisher's site pdf Project Page [BibTex]

video publisher's site pdf Project Page [BibTex]


Scan-Based Flow Modelling in Human Upper Airways
Scan-Based Flow Modelling in Human Upper Airways

Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

In Patient-Specific Modeling in Tomorrow’s Medicine, pages: 241 - 280, 0, (Editors: Amit Gefen), Springer, 2012 (inbook)

[BibTex]

[BibTex]


An Introduction to Random Forests for Multi-class Object Detection
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Home {3D} body scans from noisy image and range data
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

Project Page [BibTex]

Project Page [BibTex]

2010


ImageFlow: Streaming Image Search
ImageFlow: Streaming Image Search

Jampani, V., Ramos, G., Drucker, S.

MSR-TR-2010-148, Microsoft Research, Redmond, 2010 (techreport)

Abstract
Traditional grid and list representations of image search results are the dominant interaction paradigms that users face on a daily basis, yet it is unclear that such paradigms are well-suited for experiences where the user‟s task is to browse images for leisure, to discover new information or to seek particular images to represent ideas. We introduce ImageFlow, a novel image search user interface that ex-plores a different alternative to the traditional presentation of image search results. ImageFlow presents image results on a canvas where we map semantic features (e.g., rele-vance, related queries) to the canvas‟ spatial dimensions (e.g., x, y, z) in a way that allows for several levels of en-gagement – from passively viewing a stream of images, to seamlessly navigating through the semantic space and ac-tively collecting images for sharing and reuse. We have implemented our system as a fully functioning prototype, and we report on promising, preliminary usage results.

url pdf link (url) [BibTex]

2010

url pdf link (url) [BibTex]

2009


no image
ISocRob-MSL 2009 Team Description Paper for Middle Sized League

Lima, P., Santos, J., Estilita, J., Barbosa, M., Ahmad, A., Carreira, J.

13th Annual RoboCup International Symposium 2009, July 2009 (techreport)

Abstract
This paper describes the status of the ISocRob MSL roboticsoccer team as required by the RoboCup 2009 qualification procedures.Since its previous participation in RoboCup, the ISocRob team has car-ried out significant developments in various topics, the most relevantof which are presented here. These include self-localization, 3D objecttracking and cooperative object localization, motion control and rela-tional behaviors. A brief description of the hardware of the ISocRobrobots and of the software architecture adopted by the team is also in-cluded.

[BibTex]

2009

[BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

link (url) [BibTex]

link (url) [BibTex]


Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis
Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis

Serre, T.*, Jhuang, H*., Garrote, E., Poggio, T., Steele, A.

CBCL paper #283/MIT-CSAIL-TR #2009-052., MIT, 2009 (techreport)

pdf [BibTex]

pdf [BibTex]

2002


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

2002

pdf [BibTex]

1998


Looking at people in action - An overview
Looking at people in action - An overview

Yacoob, Y., Davis, L. S., Black, M., Gavrila, D., Horprasert, T., Morimoto, C.

In Computer Vision for Human–Machine Interaction, (Editors: R. Cipolla and A. Pentland), Cambridge University Press, 1998 (incollection)

publisher site google books [BibTex]

1998

publisher site google books [BibTex]