Header logo is ps


2020


AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning

Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., Ahmad, A.

IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 5(4):6678 - 6685, IEEE, October 2020, Also accepted and presented in the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
In this letter, we introduce a deep reinforcement learning (DRL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose, and shape of a single moving person using multiple micro aerial vehicles. State-of-the-art solutions to this problem are based on classical control methods, which depend on hand-crafted system, and observation models. Such models are difficult to derive, and generalize across different systems. Moreover, the non-linearities, and non-convexities of these models lead to sub-optimal controls. In our work, we formulate this problem as a sequential decision making task to achieve the vision-based motion capture objectives, and solve it using a deep neural network-based RL method. We leverage proximal policy optimization (PPO) to train a stochastic decentralized control policy for formation control. The neural network is trained in a parallelized setup in synthetic environments. We performed extensive simulation experiments to validate our approach. Finally, real-robot experiments demonstrate that our policies generalize to real world conditions.

link (url) DOI [BibTex]

2020

link (url) DOI [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, 39(5), August 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

project page pdf preprint DOI [BibTex]

project page pdf preprint DOI [BibTex]


Analysis of motor development within the first year of life: 3-{D} motion tracking without markers for early detection of developmental disorders
Analysis of motor development within the first year of life: 3-D motion tracking without markers for early detection of developmental disorders

Parisi, C., Hesse, N., Tacke, U., Rocamora, S. P., Blaschek, A., Hadders-Algra, M., Black, M. J., Heinen, F., Müller-Felber, W., Schroeder, A. S.

Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 63, pages: 881–890, July 2020 (article)

Abstract
Children with motor development disorders benefit greatly from early interventions. An early diagnosis in pediatric preventive care (U2–U5) can be improved by automated screening. Current approaches to automated motion analysis, however, are expensive, require lots of technical support, and cannot be used in broad clinical application. Here we present an inexpensive, marker-free video analysis tool (KineMAT) for infants, which digitizes 3‑D movements of the entire body over time allowing automated analysis in the future. Three-minute video sequences of spontaneously moving infants were recorded with a commercially available depth-imaging camera and aligned with a virtual infant body model (SMIL model). The virtual image generated allows any measurements to be carried out in 3‑D with high precision. We demonstrate seven infants with different diagnoses. A selection of possible movement parameters was quantified and aligned with diagnosis-specific movement characteristics. KineMAT and the SMIL model allow reliable, three-dimensional measurements of spontaneous activity in infants with a very low error rate. Based on machine-learning algorithms, KineMAT can be trained to automatically recognize pathological spontaneous motor skills. It is inexpensive and easy to use and can be developed into a screening tool for preventive care for children.

pdf on-line w/ sup mat DOI [BibTex]

pdf on-line w/ sup mat DOI [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(10):2540-2551, 2020 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

pdf DOI poster link (url) DOI [BibTex]

pdf DOI poster link (url) DOI [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]

2016


Creating body shapes from verbal descriptions by linking similarity spaces
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

pdf [BibTex]

2016

pdf [BibTex]


{Body Talk}: Crowdshaping Realistic {3D} Avatars with Words
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Capturing Hands in Action using Discriminative Salient Points and Physics Simulation
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Human Pose Estimation from Video and IMUs
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]


Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


The GRASP Taxonomy of Human Grasp Types
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Map-Based Probabilistic Visual Self-Localization
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

pdf Project Page [BibTex]

pdf Project Page [BibTex]

2010


Decoding complete reach and grasp actions from local primary motor cortex populations
Decoding complete reach and grasp actions from local primary motor cortex populations

(Featured in Nature’s Research Highlights (Nature, Vol 466, 29 July 2010))

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J., Black, M. J., Donoghue, J. P.

J. of Neuroscience, 39(29):9659-9669, July 2010 (article)

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]

2010

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]


Guest editorial: State of the art in image- and video-based human pose and motion estimation
Guest editorial: State of the art in image- and video-based human pose and motion estimation

Sigal, L., Black, M. J.

International Journal of Computer Vision, 87(1):1-3, March 2010 (article)

pdf from publisher [BibTex]

pdf from publisher [BibTex]


{HumanEva}: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion

Sigal, L., Balan, A., Black, M. J.

International Journal of Computer Vision, 87(1):4-27, Springer Netherlands, March 2010 (article)

Abstract
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HumanEva datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40,000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


 Automated Home-Cage Behavioral Phenotyping of Mice
Automated Home-Cage Behavioral Phenotyping of Mice

Jhuang, H., Garrote, E., Mutch, J., Poggio, T., Steele, A., Serre, T.

Nature Communications, Nature Communications, 2010 (article)

software, demo pdf [BibTex]

software, demo pdf [BibTex]


Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

Pdf [BibTex]

Pdf [BibTex]

2006


Bayesian population decoding of motor cortical activity using a {Kalman} filter
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

pdf preprint pdf from publisher abstract [BibTex]

2006

pdf preprint pdf from publisher abstract [BibTex]

1996


Estimating optical flow in segmented images using variable-order parametric models with local deformations
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

pdf pdf from publisher [BibTex]

1996

pdf pdf from publisher [BibTex]


On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

pdf pdf from publisher DOI [BibTex]


The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]