Header logo is ps


2017


Learning a model of facial shape and expression from {4D} scans
Learning a model of facial shape and expression from 4D scans

Li, T., Bolkart, T., Black, M. J., Li, H., Romero, J.

ACM Transactions on Graphics, 36(6):194:1-194:17, November 2017, Two first authors contributed equally (article)

Abstract
The field of 3D face modeling has a large gap between high-end and low-end methods. At the high end, the best facial animation is indistinguishable from real humans, but this comes at the cost of extensive manual labor. At the low end, face capture from consumer depth sensors relies on 3D face models that are not expressive enough to capture the variability in natural facial shape and expression. We seek a middle ground by learning a facial model from thousands of accurately aligned 3D scans. Our FLAME model (Faces Learned with an Articulated Model and Expressions) is designed to work with existing graphics software and be easy to fit to data. FLAME uses a linear shape space trained from 3800 scans of human heads. FLAME combines this linear shape space with an articulated jaw, neck, and eyeballs, pose-dependent corrective blendshapes, and additional global expression from 4D face sequences in the D3DFACS dataset along with additional 4D sequences.We accurately register a template mesh to the scan sequences and make the D3DFACS registrations available for research purposes. In total the model is trained from over 33, 000 scans. FLAME is low-dimensional but more expressive than the FaceWarehouse model and the Basel Face Model. We compare FLAME to these models by fitting them to static 3D scans and 4D sequences using the same optimization method. FLAME is significantly more accurate and is available for research purposes (http://flame.is.tue.mpg.de).

data/model video code chumpy code tensorflow paper supplemental Project Page [BibTex]

2017

data/model video code chumpy code tensorflow paper supplemental Project Page [BibTex]


Investigating Body Image Disturbance in Anorexia Nervosa Using Novel Biometric Figure Rating Scales: A Pilot Study
Investigating Body Image Disturbance in Anorexia Nervosa Using Novel Biometric Figure Rating Scales: A Pilot Study

Mölbert, S. C., Thaler, A., Streuber, S., Black, M. J., Karnath, H., Zipfel, S., Mohler, B., Giel, K. E.

European Eating Disorders Review, 25(6):607-612, November 2017 (article)

Abstract
This study uses novel biometric figure rating scales (FRS) spanning body mass index (BMI) 13.8 to 32.2 kg/m2 and BMI 18 to 42 kg/m2. The aims of the study were (i) to compare FRS body weight dissatisfaction and perceptual distortion of women with anorexia nervosa (AN) to a community sample; (ii) how FRS parameters are associated with questionnaire body dissatisfaction, eating disorder symptoms and appearance comparison habits; and (iii) whether the weight spectrum of the FRS matters. Women with AN (n = 24) and a community sample of women (n = 104) selected their current and ideal body on the FRS and completed additional questionnaires. Women with AN accurately picked the body that aligned best with their actual weight in both FRS. Controls underestimated their BMI in the FRS 14–32 and were accurate in the FRS 18–42. In both FRS, women with AN desired a body close to their actual BMI and controls desired a thinner body. Our observations suggest that body image disturbance in AN is unlikely to be characterized by a visual perceptual disturbance, but rather by an idealization of underweight in conjunction with high body dissatisfaction. The weight spectrum of FRS can influence the accuracy of BMI estimation.

publisher DOI Project Page [BibTex]


Embodied Hands: Modeling and Capturing Hands and Bodies Together
Embodied Hands: Modeling and Capturing Hands and Bodies Together

Romero, J., Tzionas, D., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6):245:1-245:17, 245:1–245:17, ACM, November 2017 (article)

Abstract
Humans move their hands and bodies together to communicate and solve tasks. Capturing and replicating such coordinated activity is critical for virtual characters that behave realistically. Surprisingly, most methods treat the 3D modeling and tracking of bodies and hands separately. Here we formulate a model of hands and bodies interacting together and fit it to full-body 4D sequences. When scanning or capturing the full body in 3D, hands are small and often partially occluded, making their shape and pose hard to recover. To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand. MANO provides a compact mapping from hand poses to pose blend shape corrections and a linear manifold of pose synergies. We attach MANO to a standard parameterized 3D body shape model (SMPL), resulting in a fully articulated body and hand model (SMPL+H). We illustrate SMPL+H by fitting complex, natural, activities of subjects captured with a 4D scanner. The fitting is fully automatic and results in full body models that move naturally with detailed hand motions and a realism not seen before in full body performance capture. The models and data are freely available for research purposes at http://mano.is.tue.mpg.de.

website youtube paper suppl video link (url) DOI Project Page [BibTex]

website youtube paper suppl video link (url) DOI Project Page [BibTex]


An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking
An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking

Ahmad, A., Lawless, G., Lima, P.

IEEE Transactions on Robotics (T-RO), 33, pages: 1184 - 1199, October 2017 (article)

Abstract
In this article we present a unified approach for multi-robot cooperative simultaneous localization and object tracking based on particle filters. Our approach is scalable with respect to the number of robots in the team. We introduce a method that reduces, from an exponential to a linear growth, the space and computation time requirements with respect to the number of robots in order to maintain a given level of accuracy in the full state estimation. Our method requires no increase in the number of particles with respect to the number of robots. However, in our method each particle represents a full state hypothesis, leading to the linear dependency on the number of robots of both space and time complexity. The derivation of the algorithm implementing our approach from a standard particle filter algorithm and its complexity analysis are presented. Through an extensive set of simulation experiments on a large number of randomized datasets, we demonstrate the correctness and efficacy of our approach. Through real robot experiments on a standardized open dataset of a team of four soccer playing robots tracking a ball, we evaluate our method's estimation accuracy with respect to the ground truth values. Through comparisons with other methods based on i) nonlinear least squares minimization and ii) joint extended Kalman filter, we further highlight our method's advantages. Finally, we also present a robustness test for our approach by evaluating it under scenarios of communication and vision failure in teammate robots.

Published Version link (url) DOI [BibTex]


Early Stopping Without a Validation Set
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

link (url) Project Page Project Page [BibTex]


Data-Driven Physics for Human Soft Tissue Animation
Data-Driven Physics for Human Soft Tissue Animation

Kim, M., Pons-Moll, G., Pujades, S., Bang, S., Kim, J., Black, M. J., Lee, S.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):54:1-54:12, 2017 (article)

Abstract
Data driven models of human poses and soft-tissue deformations can produce very realistic results, but they only model the visible surface of the human body and cannot create skin deformation due to interactions with the environment. Physical simulations can generalize to external forces, but their parameters are difficult to control. In this paper, we present a layered volumetric human body model learned from data. Our model is composed of a data-driven inner layer and a physics-based external layer. The inner layer is driven with a volumetric statistical body model (VSMPL). The soft tissue layer consists of a tetrahedral mesh that is driven using the finite element method (FEM). Model parameters, namely the segmentation of the body into layers and the soft tissue elasticity, are learned directly from 4D registrations of humans exhibiting soft tissue deformations. The learned two layer model is a realistic full-body avatar that generalizes to novel motions and external forces. Experiments show that the resulting avatars produce realistic results on held out sequences and react to external forces. Moreover, the model supports the retargeting of physical properties from one avatar when they share the same topology.

video paper link (url) Project Page [BibTex]

video paper link (url) Project Page [BibTex]


Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

(Best Paper, Eurographics 2017)

Marcard, T. V., Rosenhahn, B., Black, M., Pons-Moll, G.

Computer Graphics Forum 36(2), Proceedings of the 38th Annual Conference of the European Association for Computer Graphics (Eurographics), pages: 349-360 , 2017 (article)

Abstract
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Efficient 2D and 3D Facade Segmentation using Auto-Context
Efficient 2D and 3D Facade Segmentation using Auto-Context

Gadde, R., Jampani, V., Marlet, R., Gehler, P.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 (article)

Abstract
This paper introduces a fast and efficient segmentation technique for 2D images and 3D point clouds of building facades. Facades of buildings are highly structured and consequently most methods that have been proposed for this problem aim to make use of this strong prior information. Contrary to most prior work, we are describing a system that is almost domain independent and consists of standard segmentation methods. We train a sequence of boosted decision trees using auto-context features. This is learned using stacked generalization. We find that this technique performs better, or comparable with all previous published methods and present empirical results on all available 2D and 3D facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test-time inference.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


{ClothCap}: Seamless {4D} Clothing Capture and Retargeting
ClothCap: Seamless 4D Clothing Capture and Retargeting

Pons-Moll, G., Pujades, S., Hu, S., Black, M.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):73:1-73:15, ACM, New York, NY, USA, 2017, Two first authors contributed equally (article)

Abstract
Designing and simulating realistic clothing is challenging and, while several methods have addressed the capture of clothing from 3D scans, previous methods have been limited to single garments and simple motions, lack detail, or require specialized texture patterns. Here we address the problem of capturing regular clothing on fully dressed people in motion. People typically wear multiple pieces of clothing at a time. To estimate the shape of such clothing, track it over time, and render it believably, each garment must be segmented from the others and the body. Our ClothCap approach uses a new multi-part 3D model of clothed bodies, automatically segments each piece of clothing, estimates the naked body shape and pose under the clothing, and tracks the 3D deformations of the clothing over time. We estimate the garments and their motion from 4D scans; that is, high-resolution 3D scans of the subject in motion at 60 fps. The model allows us to capture a clothed person in motion, extract their clothing, and retarget the clothing to new body shapes. ClothCap provides a step towards virtual try-on with a technology for capturing, modeling, and analyzing clothing in motion.

video project_page paper link (url) DOI Project Page Project Page [BibTex]

video project_page paper link (url) DOI Project Page Project Page [BibTex]

2016


Creating body shapes from verbal descriptions by linking similarity spaces
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

pdf [BibTex]

2016

pdf [BibTex]


{Body Talk}: Crowdshaping Realistic {3D} Avatars with Words
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Capturing Hands in Action using Discriminative Salient Points and Physics Simulation
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Human Pose Estimation from Video and IMUs
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]


Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


The GRASP Taxonomy of Human Grasp Types
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Map-Based Probabilistic Visual Self-Localization
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

pdf Project Page [BibTex]

pdf Project Page [BibTex]

2009


Fields of Experts
Fields of Experts

Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 82(2):205-29, April 2009 (article)

Abstract
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach provides a practical method for learning high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. These clique potentials are modeled using the Product-of-Experts framework that uses non-linear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field-of-Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with specialized techniques.

pdf pdf from publisher [BibTex]

2009

pdf pdf from publisher [BibTex]


Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy

Liang Zhong, Yi Su, Si Yong Yeo, Ru San Tan Dhanjoo Ghista, Ghassan Kassab

American Journal of Physiology – Heart and Circulatory Physiology, 296(3):H573-84, 2009 (article)

Abstract
Geometric remodeling of the left ventricle (LV) after myocardial infarction is associated with changes in myocardial wall stress. The objective of this study was to determine the regional curvatures and wall stress based on three-dimensional (3-D) reconstructions of the LV using MRI. Ten patients with ischemic dilated cardiomyopathy (IDCM) and 10 normal subjects underwent MRI scan. The IDCM patients also underwent delayed gadolinium-enhancement imaging to delineate the extent of myocardial infarct. Regional curvedness, local radii of curvature, and wall thickness were calculated. The percent curvedness change between end diastole and end systole was also calculated. In normal heart, a short- and long-axis two-dimensional analysis showed a 41 +/- 11% and 45 +/- 12% increase of the mean of peak systolic wall stress between basal and apical sections, respectively. However, 3-D analysis showed no significant difference in peak systolic wall stress from basal and apical sections (P = 0.298, ANOVA). LV shape differed between IDCM patients and normal subjects in several ways: LV shape was more spherical (sphericity index = 0.62 +/- 0.08 vs. 0.52 +/- 0.06, P < 0.05), curvedness at end diastole (mean for 16 segments = 0.034 +/- 0.0056 vs. 0.040 +/- 0.0071 mm(-1), P < 0.001) and end systole (mean for 16 segments = 0.037 +/- 0.0068 vs. 0.067 +/- 0.020 mm(-1), P < 0.001) was affected by infarction, and peak systolic wall stress was significantly increased at each segment in IDCM patients. The 3-D quantification of regional wall stress by cardiac MRI provides more precise evaluation of cardiac mechanics. Identification of regional curvedness and wall stresses helps delineate the mechanisms of LV remodeling in IDCM and may help guide therapeutic LV restoration.

[BibTex]

[BibTex]


A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging
A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging

Si Yong Yeo, Liang Zhong, Yi Su, Ru San Tan, Dhanjoo Ghista

Medical & Biological Engineering & Computing, 47(3):313-322, 2009 (article)

Abstract
It is believed that left ventricular (LV) regional shape is indicative of LV regional function, and cardiac pathologies are often associated with regional alterations in ventricular shape. In this article, we present a set of procedures for evaluating regional LV surface shape from anatomically accurate models reconstructed from cardiac magnetic resonance (MR) images. LV surface curvatures are computed using local surface fitting method, which enables us to assess regional LV shape and its variation. Comparisons are made between normal and diseased hearts. It is illustrated that LV surface curvatures at different regions of the normal heart are higher than those of the diseased heart. Also, the normal heart experiences a larger change in regional curvedness during contraction than the diseased heart. It is believed that with a wide range of dataset being evaluated, this approach will provide a new and efficient way of quantifying LV regional function.

link (url) [BibTex]

link (url) [BibTex]

2004


On the variability of manual spike sorting
On the variability of manual spike sorting

Wood, F., Black, M. J., Vargas-Irwin, C., Fellows, M., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):912-918, June 2004 (article)

pdf pdf from publisher [BibTex]

2004

pdf pdf from publisher [BibTex]


Modeling and decoding motor cortical activity using a switching {Kalman} filter
Modeling and decoding motor cortical activity using a switching Kalman filter

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):933-942, June 2004 (article)

Abstract
We present a switching Kalman filter model for the real-time inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A “hidden state” models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the non-Gaussian nature of firing rates, and can cope with crudely sorted neural data common in on-line prosthetic applications.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]