Computer-mediated connections between human motor cortical neurons and assistive devices
promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical
study of an intracortical neural interface system demonstrated that a tetraplegic human was
able to obtain continuous two-dimensional control of a computer cursor using neural activity
recorded from his motor cortex. This control, however, was not sufficiently accurate for
reliable use in many common computer control tasks. Here, we studied several central design
choices for such a system including the kinematic representation for cursor movement, the
decoding method that translates neuronal ensemble spiking activity into a control signal and
the cursor control task used during training for optimizing the parameters of the decoding
method. In two tetraplegic participants, we found that controlling a cursor’s velocity resulted
in more accurate closed-loop control than controlling its position directly and that cursor
velocity control was achieved more rapidly than position control. Control quality was further
improved over conventional linear filters by using a probabilistic method, the Kalman filter, to
decode human motor cortical activity. Performance assessment based on standard metrics used
for the evaluation of a wide range of pointing devices demonstrated significantly improved
cursor control with velocity rather than position decoding.