Header logo is ps


2020


Machine learning systems and methods for augmenting images
Machine learning systems and methods for augmenting images

Black, M., Rachlin, E., Lee, E., Heron, N., Loper, M., Weiss, A., Smith, D.

(US Patent 10,529,137 B1), January 2020 (patent)

Abstract
Disclosed is a method including receiving visual input comprising a human within a scene, detecting a pose associated with the human using a trained machine learning model that detects human poses to yield a first output, estimating a shape (and optionally a motion) associated with the human using a trained machine learning model associated that detects shape (and optionally motion) to yield a second output, recognizing the scene associated with the visual input using a trained convolutional neural network which determines information about the human and other objects in the scene to yield a third output, and augmenting reality within the scene by leveraging one or more of the first output, the second output, and the third output to place 2D and/or 3D graphics in the scene.

[BibTex]

2020

[BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

Google Patents [BibTex]

2016

Google Patents [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

pdf [BibTex]