Header logo is ps


2009


Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis
Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis

Serre, T.*, Jhuang, H*., Garrote, E., Poggio, T., Steele, A.

CBCL paper #283/MIT-CSAIL-TR #2009-052., MIT, 2009 (techreport)

pdf [BibTex]

2009

pdf [BibTex]


Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers

Gehler, P., Nowozin, S.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2836-2843, IEEE Computer Society, 2009 (inproceedings)

doi project page pdf [BibTex]

doi project page pdf [BibTex]


Monocular Real-Time 3D Articulated Hand Pose Estimation
Monocular Real-Time 3D Articulated Hand Pose Estimation

Romero, J., Kjellström, H., Kragic, D.

In IEEE-RAS International Conference on Humanoid Robots, pages: 87-92, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


Grasp Recognition and Mapping on Humanoid Robots
Grasp Recognition and Mapping on Humanoid Robots

Do, M., Romero, J., Kjellström, H., Azad, P., Asfour, T., Kragic, D., Dillmann, R.

In IEEE-RAS International Conference on Humanoid Robots, pages: 465-471, 2009 (inproceedings)

Pdf Video [BibTex]

Pdf Video [BibTex]


4D Cardiac Segmentation of the Epicardium and Left Ventricle
4D Cardiac Segmentation of the Epicardium and Left Ventricle

Pons-Moll, G., Tadmor, G., MacLeod, R. S., Rosenhahn, B., Brooks, D. H.

In World Congress of Medical Physics and Biomedical Engineering (WC), 2009 (inproceedings)

[BibTex]

[BibTex]


Geometric Potential Force for the Deformable Model
Geometric Potential Force for the Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 20th British Machine Vision Conference, pages: 1-11, 2009 (inproceedings)

Abstract
We propose a new external force field for deformable models which can be conve- niently generalized to high dimensions. The external force field is based on hypothesized interactions between the relative geometries of the deformable model and image gradi- ents. The evolution of the deformable model is solved using the level set method. The dynamic interaction forces between the geometries can greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and in dealing with weak image edges. The new deformable model can handle arbi- trary cross-boundary initializations. Here, we show that the proposed method achieve significant improvements when compared against existing state-of-the-art techniques.

[BibTex]

[BibTex]


Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy

Liang Zhong, Yi Su, Si Yong Yeo, Ru San Tan Dhanjoo Ghista, Ghassan Kassab

American Journal of Physiology – Heart and Circulatory Physiology, 296(3):H573-84, 2009 (article)

Abstract
Geometric remodeling of the left ventricle (LV) after myocardial infarction is associated with changes in myocardial wall stress. The objective of this study was to determine the regional curvatures and wall stress based on three-dimensional (3-D) reconstructions of the LV using MRI. Ten patients with ischemic dilated cardiomyopathy (IDCM) and 10 normal subjects underwent MRI scan. The IDCM patients also underwent delayed gadolinium-enhancement imaging to delineate the extent of myocardial infarct. Regional curvedness, local radii of curvature, and wall thickness were calculated. The percent curvedness change between end diastole and end systole was also calculated. In normal heart, a short- and long-axis two-dimensional analysis showed a 41 +/- 11% and 45 +/- 12% increase of the mean of peak systolic wall stress between basal and apical sections, respectively. However, 3-D analysis showed no significant difference in peak systolic wall stress from basal and apical sections (P = 0.298, ANOVA). LV shape differed between IDCM patients and normal subjects in several ways: LV shape was more spherical (sphericity index = 0.62 +/- 0.08 vs. 0.52 +/- 0.06, P < 0.05), curvedness at end diastole (mean for 16 segments = 0.034 +/- 0.0056 vs. 0.040 +/- 0.0071 mm(-1), P < 0.001) and end systole (mean for 16 segments = 0.037 +/- 0.0068 vs. 0.067 +/- 0.020 mm(-1), P < 0.001) was affected by infarction, and peak systolic wall stress was significantly increased at each segment in IDCM patients. The 3-D quantification of regional wall stress by cardiac MRI provides more precise evaluation of cardiac mechanics. Identification of regional curvedness and wall stresses helps delineate the mechanisms of LV remodeling in IDCM and may help guide therapeutic LV restoration.

[BibTex]

[BibTex]


Level Set Based Automatic Segmentation of Human Aorta
Level Set Based Automatic Segmentation of Human Aorta

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Computational & Mathematical Biomedical Engineering, pages: 242-245, 2009 (inproceedings)

[BibTex]

[BibTex]


A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging
A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging

Si Yong Yeo, Liang Zhong, Yi Su, Ru San Tan, Dhanjoo Ghista

Medical & Biological Engineering & Computing, 47(3):313-322, 2009 (article)

Abstract
It is believed that left ventricular (LV) regional shape is indicative of LV regional function, and cardiac pathologies are often associated with regional alterations in ventricular shape. In this article, we present a set of procedures for evaluating regional LV surface shape from anatomically accurate models reconstructed from cardiac magnetic resonance (MR) images. LV surface curvatures are computed using local surface fitting method, which enables us to assess regional LV shape and its variation. Comparisons are made between normal and diseased hearts. It is illustrated that LV surface curvatures at different regions of the normal heart are higher than those of the diseased heart. Also, the normal heart experiences a larger change in regional curvedness during contraction than the diseased heart. It is believed that with a wide range of dataset being evaluated, this approach will provide a new and efficient way of quantifying LV regional function.

link (url) [BibTex]

link (url) [BibTex]


In Defense of Orthonormality Constraints for Nonrigid Structure from Motion
In Defense of Orthonormality Constraints for Nonrigid Structure from Motion

Akhter, I., Sheikh, Y., Khan, S.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages: 2447-2453, 2009 (inproceedings)

Abstract
In factorization approaches to nonrigid structure from motion, the 3D shape of a deforming object is usually modeled as a linear combination of a small number of basis shapes. The original approach to simultaneously estimate the shape basis and nonrigid structure exploited orthonormality constraints for metric rectification. Recently, it has been asserted that structure recovery through orthonormality constraints alone is inherently ambiguous and cannot result in a unique solution. This assertion has been accepted as conventional wisdom and is the justification of many remedial heuristics in literature. Our key contribution is to prove that orthonormality constraints are in fact sufficient to recover the 3D structure from image observations alone. We characterize the true nature of the ambiguity in using orthonormality constraints for the shape basis and show that it has no impact on structure reconstruction. We conclude from our experimentation that the primary challenge in using shape basis for nonrigid structure from motion is the difficulty in the optimization problem rather than the ambiguity in orthonormality constraints.

pdf [BibTex]

pdf [BibTex]


no image
Dynamic distortion correction for endoscopy systems with exchangeable optics

Stehle, T., Hennes, M., Gross, S., Behrens, A., Wulff, J., Aach, T.

In Bildverarbeitung für die Medizin 2009, pages: 142-146, Springer Berlin Heidelberg, 2009 (inproceedings)

Abstract
Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Computational mechanisms for the recognition of time sequences of images in the visual cortex

Tan, C., Jhuang, H., Singer, J., Serre, T., Sheinberg, D., Poggio, T.

Society for Neuroscience, 2009 (conference)

pdf [BibTex]

pdf [BibTex]


Interactive Inverse Kinematics for Monocular Motion Estimation
Interactive Inverse Kinematics for Monocular Motion Estimation

Morten Engell-Norregaard, Soren Hauberg, Jerome Lapuyade, Kenny Erleben, Kim S. Pedersen

In The 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), 2009 (inproceedings)

Conference site Paper site [BibTex]

Conference site Paper site [BibTex]


A Comprehensive Grasp Taxonomy
A Comprehensive Grasp Taxonomy

Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.

In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Population coding of ground truth motion in natural scenes in the early visual system

Stanley, G., Black, M. J., Lewis, J., Desbordes, G., Jin, J., Alonso, J.

COSYNE, 2009 (conference)

[BibTex]

[BibTex]


Segmentation of Human Upper Airway Using a Level Set Based Deformable Model
Segmentation of Human Upper Airway Using a Level Set Based Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 13th Medical Image Understanding and Analysis, 2009 (inproceedings)

[BibTex]

[BibTex]


Three Dimensional Monocular Human Motion Analysis in End-Effector Space
Three Dimensional Monocular Human Motion Analysis in End-Effector Space

Soren Hauberg, Jerome Lapuyade, Morten Engell-Norregaard, Kenny Erleben, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681, pages: 235-248, Lecture Notes in Computer Science, (Editors: Cremers, Daniel and Boykov, Yuri and Blake, Andrew and Schmidt, Frank), Springer Berlin Heidelberg, 2009 (inproceedings)

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]


no image
Decoding visual motion from correlated firing of thalamic neurons

Stanley, G. B., Black, M. J., Desbordes, G., Jin, J., Wang, Y., Alonso, J.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009 (conference)

[BibTex]

[BibTex]

2002


Inferring hand motion from multi-cell recordings in motor cortex using a {Kalman} filter
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Probabilistic inference of hand motion from neural activity in motor cortex
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

Abstract
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides train- ing data of neural firing conditioned on hand kinematics. We learn a non- parametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non- Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is com- pared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.

pdf [BibTex]

pdf [BibTex]


Automatic detection and tracking of human motion with a view-based representation
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


A layered motion representation with occlusion and compact spatial support
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Implicit probabilistic models of human motion for synthesis and tracking
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial modeling
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1998


Summarization of video-taped presentations: Automatic analysis of motion and gesture
Summarization of video-taped presentations: Automatic analysis of motion and gesture

Ju, S. X., Black, M. J., Minneman, S., Kimber, D.

IEEE Trans. on Circuits and Systems for Video Technology, 8(5):686-696, September 1998 (article)

Abstract
This paper presents an automatic system for analyzing and annotating video sequences of technical talks. Our method uses a robust motion estimation technique to detect key frames and segment the video sequence into subsequences containing a single overhead slide. The subsequences are stabilized to remove motion that occurs when the speaker adjusts their slides. Any changes remaining between frames in the stabilized sequences may be due to speaker gestures such as pointing or writing, and we use active contours to automatically track these potential gestures. Given the constrained domain, we define a simple set of actions that can be recognized based on the active contour shape and motion. The recognized actions provide an annotation of the sequence that can be used to access a condensed version of the talk from a Web page.

pdf pdf from publisher DOI [BibTex]

1998

pdf pdf from publisher DOI [BibTex]


Robust anisotropic diffusion
Robust anisotropic diffusion

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

IEEE Transactions on Image Processing, 7(3):421-432, March 1998 (article)

Abstract
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The edge-stopping; function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new edge-stopping; function based on Tukey's biweight robust estimator that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the line processes allows us to develop new anisotropic diffusion equations that result in a qualitative improvement in the continuity of edges

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


The Digital Office: Overview
The Digital Office: Overview

Black, M., Berard, F., Jepson, A., Newman, W., Saund, E., Socher, G., Taylor, M.

In AAAI Spring Symposium on Intelligent Environments, pages: 1-6, Stanford, March 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


A framework for modeling appearance change in image sequences
A framework for modeling appearance change in image sequences

Black, M. J., Fleet, D. J., Yacoob, Y.

In Sixth International Conf. on Computer Vision, ICCV’98, pages: 660-667, Mumbai, India, January 1998 (inproceedings)

Abstract
Image "appearance" may change over time due to a variety of causes such as 1) object or camera motion; 2) generic photometric events including variations in illumination (e.g. shadows) and specular reflections; and 3) "iconic changes" which are specific to the objects being viewed and include complex occlusion events and changes in the material properties of the objects. We propose a general framework for representing and recovering these "appearance changes" in an image sequence as a "mixture" of different causes. The approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion.

pdf video [BibTex]

pdf video [BibTex]


Parameterized modeling and recognition of activities
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

In Sixth International Conf. on Computer Vision, ICCV’98, pages: 120-127, Mumbai, India, January 1998 (inproceedings)

Abstract
A framework for modeling and recognition of temporal activities is proposed. The modeling of sets of exemplar activities is achieved by parameterizing their representation in the form of principal components. Recognition of spatio-temporal variants of modeled activities is achieved by parameterizing the search in the space of admissible transformations that the activities can undergo. Experiments on recognition of articulated and deformable object motion from image motion parameters are presented.

pdf [BibTex]

pdf [BibTex]


Motion feature detection using steerable flow fields
Motion feature detection using steerable flow fields

Fleet, D. J., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-98, pages: 274-281, IEEE, Santa Barbara, CA, 1998 (inproceedings)

Abstract
The estimation and detection of occlusion boundaries and moving bars are important and challenging problems in image sequence analysis. Here, we model such motion features as linear combinations of steerable basis flow fields. These models constrain the interpretation of image motion, and are used in the same way as translational or affine motion models. We estimate the subspace coefficients of the motion feature models directly from spatiotemporal image derivatives using a robust regression method. From the subspace coefficients we detect the presence of a motion feature and solve for the orientation of the feature and the relative velocities of the surfaces. Our method does not require the prior computation of optical flow and recovers accurate estimates of orientation and velocity.

pdf [BibTex]

pdf [BibTex]


{PLAYBOT}: A visually-guided robot for physically disabled children
PLAYBOT: A visually-guided robot for physically disabled children

Tsotsos, J. K., Verghese, G., Dickinson, S., Jenkin, M., Jepson, A., Milios, E., Nuflo, F., Stevenson, S., Black, M., Metaxas, D., Culhane, S., Ye, Y., Mann, R.

Image & Vision Computing, Special Issue on Vision for the Disabled, 16(4):275-292, 1998 (article)

Abstract
This paper overviews the PLAYBOT project, a long-term, large-scale research program whose goal is to provide a directable robot which may enable physically disabled children to access and manipulate toys. This domain is the first test domain, but there is nothing inherent in the design of PLAYBOT that prohibits its extension to other tasks. The research is guided by several important goals: vision is the primary sensor; vision is task directed; the robot must be able to visually search its environment; object and event recognition are basic capabilities; environments must be natural and dynamic; users and environments are assumed to be unpredictable; task direction and reactivity must be smoothly integrated; and safety is of high importance. The emphasis of the research has been on vision for the robot this is the most challenging research aspect and the major bottleneck to the development of intelligent robots. Since the control framework is behavior-based, the visual capabilities of PLAYBOT are described in terms of visual behaviors. Many of the components of PLAYBOT are briefly described and several examples of implemented sub-systems are shown. The paper concludes with a description of the current overall system implementation, and a complete example of PLAYBOT performing a simple task.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Visual surveillance of human activity
Visual surveillance of human activity

L. Davis, S. F., Harwood, D., Yacoob, Y., Hariatoglu, I., Black, M.

In Asian Conference on Computer Vision, ACCV, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


A Probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions
A Probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions

Black, M. J., Jepson, A. D.

In European Conf. on Computer Vision, ECCV-98, pages: 909-924, Freiburg, Germany, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

International Journal of Computer Vision, 26(1):63-84, 1998 (article)

Abstract
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image reconstruction of standard eigenspace techniques has a number of problems and we reformulate the reconstruction problem as one of robust estimation. Second we define a “subspace constancy assumption” that allows us to exploit techniques for parameterized optical flow estimation to simultaneously solve for the view of an object and the affine transformation between the eigenspace and the image. To account for large affine transformations between the eigenspace and the image we define a multi-scale eigenspace representation and a coarse-to-fine matching strategy. Finally, we use these techniques to track objects over long image sequences in which the objects simultaneously undergo both affine image motions and changes of view. In particular we use this “EigenTracking” technique to track and recognize the gestures of a moving hand.

pdf pdf from publisher video [BibTex]


Recognizing temporal trajectories using the {Condensation} algorithm
Recognizing temporal trajectories using the Condensation algorithm

Black, M. J., Jepson, A. D.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 16-21, Nara, Japan, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Looking at people in action - An overview
Looking at people in action - An overview

Yacoob, Y., Davis, L. S., Black, M., Gavrila, D., Horprasert, T., Morimoto, C.

In Computer Vision for Human–Machine Interaction, (Editors: R. Cipolla and A. Pentland), Cambridge University Press, 1998 (incollection)

publisher site google books [BibTex]

publisher site google books [BibTex]


Robust estimation of multiple surface shapes from occluded textures
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

abstract [BibTex]

abstract [BibTex]


Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

video abstract [BibTex]

video abstract [BibTex]


Image segmentation using robust mixture models
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

pdf on-line at USPTO [BibTex]


Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

abstract [BibTex]

abstract [BibTex]