Header logo is ps


2006


Specular flow and the recovery of surface structure
Specular flow and the recovery of surface structure

Roth, S., Black, M.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 1869-1876, New York, NY, June 2006 (inproceedings)

Abstract
In scenes containing specular objects, the image motion observed by a moving camera may be an intermixed combination of optical flow resulting from diffuse reflectance (diffuse flow) and specular reflection (specular flow). Here, with few assumptions, we formalize the notion of specular flow, show how it relates to the 3D structure of the world, and develop an algorithm for estimating scene structure from 2D image motion. Unlike previous work on isolated specular highlights we use two image frames and estimate the semi-dense flow arising from the specular reflections of textured scenes. We parametrically model the image motion of a quadratic surface patch viewed from a moving camera. The flow is modeled as a probabilistic mixture of diffuse and specular components and the 3D shape is recovered using an Expectation-Maximization algorithm. Rather than treating specular reflections as noise to be removed or ignored, we show that the specular flow provides additional constraints on scene geometry that improve estimation of 3D structure when compared with reconstruction from diffuse flow alone. We demonstrate this for a set of synthetic and real sequences of mixed specular-diffuse objects.

pdf [BibTex]

2006

pdf [BibTex]


An adaptive appearance model approach for model-based articulated object tracking
An adaptive appearance model approach for model-based articulated object tracking

Balan, A., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 1, pages: 758-765, New York, NY, June 2006 (inproceedings)

Abstract
The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict self occlusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.

pdf [BibTex]

pdf [BibTex]


Measure locally, reason globally: Occlusion-sensitive articulated pose estimation
Measure locally, reason globally: Occlusion-sensitive articulated pose estimation

Sigal, L., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 2041-2048, New York, NY, June 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Statistical analysis of the non-stationarity of neural population codes
Statistical analysis of the non-stationarity of neural population codes

Kim, S., Wood, F., Fellows, M., Donoghue, J. P., Black, M. J.

In BioRob 2006, The first IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 295-299, Pisa, Italy, Febuary 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
How to choose the covariance for Gaussian process regression independently of the basis

Franz, M., Gehler, P.

In Proceedings of the Workshop Gaussian Processes in Practice, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


The rate adapting poisson model for information retrieval and object recognition
The rate adapting poisson model for information retrieval and object recognition

Gehler, P. V., Holub, A. D., Welling, M.

In Proceedings of the 23rd international conference on Machine learning, pages: 337-344, ICML ’06, ACM, New York, NY, USA, 2006 (inproceedings)

project page pdf DOI [BibTex]

project page pdf DOI [BibTex]


Implicit Wiener Series, Part II: Regularised estimation
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]


Tracking complex objects using graphical object models
Tracking complex objects using graphical object models

Sigal, L., Zhu, Y., Comaniciu, D., Black, M. J.

In International Workshop on Complex Motion, LNCS 3417, pages: 223-234, Springer-Verlag, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


{HumanEva}: Synchronized video and motion capture dataset for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

pdf abstract [BibTex]

pdf abstract [BibTex]


Bayesian population decoding of motor cortical activity using a {Kalman} filter
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

pdf preprint pdf from publisher abstract [BibTex]

pdf preprint pdf from publisher abstract [BibTex]


Hierarchical Approach for Articulated {3D} Pose-Estimation and Tracking (extended abstract)
Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking (extended abstract)

Sigal, L., Black, M. J.

In Learning, Representation and Context for Human Sensing in Video Workshop (in conjunction with CVPR), 2006 (inproceedings)

pdf poster [BibTex]

pdf poster [BibTex]


Nonlinear physically-based models for decoding motor-cortical population activity
Nonlinear physically-based models for decoding motor-cortical population activity

Shakhnarovich, G., Kim, S., Black, M. J.

In Advances in Neural Information Processing Systems 19, NIPS-2006, pages: 1257-1264, MIT Press, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
A comparison of decoding models for imagined motion from human motor cortex

Kim, S., Simeral, J., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.11. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]


Denoising archival films using a learned {Bayesian} model
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

In Int. Conf. on Image Processing, ICIP, pages: 2641-2644, Atlanta, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Efficient belief propagation with learned higher-order {Markov} random fields
Efficient belief propagation with learned higher-order Markov random fields

Lan, X., Roth, S., Huttenlocher, D., Black, M. J.

In European Conference on Computer Vision, ECCV, II, pages: 269-282, Graz, Austria, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Products of ``Edge-perts''
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

pdf [BibTex]


no image
Modeling neural control of physically realistic movement

Shaknarovich, G., Kim, S., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.12. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]

2004


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

pdf [BibTex]

2004

pdf [BibTex]


Closed-loop neural control of cursor motion using a {Kalman} filter
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


The dense estimation of motion and appearance in layers
The dense estimation of motion and appearance in layers

Yalcin, H., Black, M. J., Fablet, R.

In IEEE Workshop on Image and Video Registration, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


{3D} human limb detection using space carving and multi-view eigen models
3D human limb detection using space carving and multi-view eigen models

Bhatia, S., Sigal, L., Isard, M., Black, M. J.

In IEEE Workshop on Articulated and Nonrigid Motion, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


On the variability of manual spike sorting
On the variability of manual spike sorting

Wood, F., Black, M. J., Vargas-Irwin, C., Fellows, M., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):912-918, June 2004 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Tracking loose-limbed people
Tracking loose-limbed people

Sigal, L., Bhatia, S., Roth, S., Black, M. J., Isard, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 421-428, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Modeling and decoding motor cortical activity using a switching {Kalman} filter
Modeling and decoding motor cortical activity using a switching Kalman filter

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):933-942, June 2004 (article)

Abstract
We present a switching Kalman filter model for the real-time inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A “hidden state” models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the non-Gaussian nature of firing rates, and can cope with crudely sorted neural data common in on-line prosthetic applications.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Gibbs likelihoods for {Bayesian} tracking
Gibbs likelihoods for Bayesian tracking

Roth, S., Sigal, L., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 886-893, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Development of neural motor prostheses for humans
Development of neural motor prostheses for humans

Donoghue, J., Nurmikko, A., Friehs, G., Black, M.

In Advances in Clinical Neurophysiology, (Editors: Hallett, M. and Phillips, L.H. and Schomer, D.L. and Massey, J.M.), Supplements to Clinical Neurophysiology Vol. 57, 2004 (incollection)

pdf [BibTex]

pdf [BibTex]


no image
A direct brain-machine interface for 2D cursor control using a Kalman filter

Shaikhouni, A., Wu, W., Moris, D. S., Donoghue, J. P., Black, M. J.

Society for Neuroscience, 2004, Online (conference)

abstract [BibTex]

abstract [BibTex]

1996


Cardboard people: A parameterized model of articulated motion
Cardboard people: A parameterized model of articulated motion

Ju, S. X., Black, M. J., Yacoob, Y.

In 2nd Int. Conf. on Automatic Face- and Gesture-Recognition, pages: 38-44, Killington, Vermont, October 1996 (inproceedings)

Abstract
We extend the work of Black and Yacoob on the tracking and recognition of human facial expressions using parameterized models of optical flow to deal with the articulated motion of human limbs. We define a "cardboard person model" in which a person's limbs are represented by a set of connected planar patches. The parameterized image motion of these patches is constrained to enforce articulated motion and is solved for directly using a robust estimation technique. The recovered motion parameters provide a rich and concise description of the activity that can be used for recognition. We propose a method for performing view-based recognition of human activities from the optical flow parameters that extends previous methods to cope with the cyclical nature of human motion. We illustrate the method with examples of tracking human legs over long image sequences.

pdf [BibTex]

1996

pdf [BibTex]


Estimating optical flow in segmented images using variable-order parametric models with local deformations
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

pdf pdf from publisher DOI [BibTex]


Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency
Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency

(Nominated: Best paper)

Ju, S., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’96, pages: 307-314, San Francisco, CA, June 1996 (inproceedings)

pdf [BibTex]

pdf [BibTex]


EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

In Proc. Fourth European Conf. on Computer Vision, ECCV’96, pages: 329-342, LNCS 1064, Springer Verlag, Cambridge, England, April 1996 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


Mixture Models for Image Representation
Mixture Models for Image Representation

Jepson, A., Black, M.

PRECARN ARK Project Technical Report ARK96-PUB-54, March 1996 (techreport)

Abstract
We consider the estimation of local greylevel image structure in terms of a layered representation. This type of representation has recently been successfully used to segment various objects from clutter using either optical ow or stereo disparity information. We argue that the same type of representation is useful for greylevel data in that it allows for the estimation of properties for each of several different components without prior segmentation. Our emphasis in this paper is on the process used to extract such a layered representation from a given image In particular we consider a variant of the EM algorithm for the estimation of the layered model and consider a novel technique for choosing the number of layers to use. We briefly consider the use of a simple version of this approach for image segmentation and suggest two potential applications to the ARK project

pdf [BibTex]

pdf [BibTex]


The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

Abstract
The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions.

pdf tech report [BibTex]

1993

pdf tech report [BibTex]


A framework for the robust estimation of optical flow
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

pdf [BibTex]

pdf [BibTex]


Action, representation, and purpose: Re-evaluating the foundations of computational vision
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]