Header logo is ps


1998


A Probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions
A Probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions

Black, M. J., Jepson, A. D.

In European Conf. on Computer Vision, ECCV-98, pages: 909-924, Freiburg, Germany, 1998 (inproceedings)

pdf [BibTex]

1998

pdf [BibTex]


EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

International Journal of Computer Vision, 26(1):63-84, 1998 (article)

Abstract
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image reconstruction of standard eigenspace techniques has a number of problems and we reformulate the reconstruction problem as one of robust estimation. Second we define a “subspace constancy assumption” that allows us to exploit techniques for parameterized optical flow estimation to simultaneously solve for the view of an object and the affine transformation between the eigenspace and the image. To account for large affine transformations between the eigenspace and the image we define a multi-scale eigenspace representation and a coarse-to-fine matching strategy. Finally, we use these techniques to track objects over long image sequences in which the objects simultaneously undergo both affine image motions and changes of view. In particular we use this “EigenTracking” technique to track and recognize the gestures of a moving hand.

pdf pdf from publisher video [BibTex]


Recognizing temporal trajectories using the {Condensation} algorithm
Recognizing temporal trajectories using the Condensation algorithm

Black, M. J., Jepson, A. D.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 16-21, Nara, Japan, 1998 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Looking at people in action - An overview
Looking at people in action - An overview

Yacoob, Y., Davis, L. S., Black, M., Gavrila, D., Horprasert, T., Morimoto, C.

In Computer Vision for Human–Machine Interaction, (Editors: R. Cipolla and A. Pentland), Cambridge University Press, 1998 (incollection)

publisher site google books [BibTex]

publisher site google books [BibTex]


Robust estimation of multiple surface shapes from occluded textures
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

abstract [BibTex]

abstract [BibTex]


Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

video abstract [BibTex]

video abstract [BibTex]


Image segmentation using robust mixture models
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

pdf on-line at USPTO [BibTex]


Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

abstract [BibTex]

abstract [BibTex]

1994


Estimating multiple independent motions in segmented images using parametric models with local deformations
Estimating multiple independent motions in segmented images using parametric models with local deformations

Black, M. J., Jepson, A.

In Workshop on Non-rigid and Articulate Motion, pages: 220-227, Austin, Texas, November 1994 (inproceedings)

pdf abstract [BibTex]

1994

pdf abstract [BibTex]


Time to contact from active tracking of motion boundaries
Time to contact from active tracking of motion boundaries

Ju, X., Black, M. J.

In Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision, pages: 26-37, Proc. SPIE 2354, Boston, Massachusetts, November 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


A computational and evolutionary perspective on the role of representation in computer vision
A computational and evolutionary perspective on the role of representation in computer vision

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):65-73, July 1994 (article)

Abstract
Recently, the assumed goal of computer vision, reconstructing a representation of the scene, has been critcized as unproductive and impractical. Critics have suggested that the reconstructive approach should be supplanted by a new purposive approach that emphasizes functionality and task driven perception at the cost of general vision. In response to these arguments, we claim that the recovery paradigm central to the reconstructive approach is viable, and, moreover, provides a promising framework for understanding and modeling general purpose vision in humans and machines. An examination of the goals of vision from an evolutionary perspective and a case study involving the recovery of optic flow support this hypothesis. In particular, while we acknowledge that there are instances where the purposive approach may be appropriate, these are insufficient for implementing the wide range of visual tasks exhibited by humans (the kind of flexible vision system presumed to be an end-goal of artificial intelligence). Furthermore, there are instances, such as recent work on the estimation of optic flow, where the recovery paradigm may yield useful and robust results. Thus, contrary to certain claims, the purposive approach does not obviate the need for recovery and reconstruction of flexible representations of the world.

pdf [BibTex]

pdf [BibTex]


Reconstruction and purpose
Reconstruction and purpose

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):113-118, July 1994 (article)

pdf [BibTex]

pdf [BibTex]


The outlier process: Unifying line processes and robust statistics
The outlier process: Unifying line processes and robust statistics

Black, M., Rangarajan, A.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’94, pages: 15-22, Seattle, WA, June 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


Recursive non-linear estimation of discontinuous flow fields
Recursive non-linear estimation of discontinuous flow fields

Black, M.

In Proc. Third European Conf. on Computer Vision, ECCV’94,, pages: 138-145, LNCS 800, Springer Verlag, Sweden, May 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]