
Semantic Video CNNs through Representation Warping

Raghudeep Gadde1;3, Varun Jampani1;4 and Peter V. Gehler1;2;3

1MPI for Intelligent Systems, 2University of Würzburg
3Bernstein Center for Computational Neuroscience, 4NVIDIA

f raghudeep.gadde,varun.jampani,peter.gehler g@tuebingen.mpg.de

Abstract
In this work, we propose a technique to convert CNN

models for semantic segmentation of static images into
CNNs for video data. We describe a warping method that
can be used to augment existing architectures with very lit-
tle extra computational cost. This module is called Net-
Warp and we demonstrate its use for a range of network
architectures. The main design principle is to use opti-
cal �ow of adjacent frames for warping internal network
representations across time. A key insight of this work is
that fast optical �ow methods can be combined with many
different CNN architectures for improved performance and
end-to-end training. Experiments validate that the proposed
approach incurs only little extra computational cost, while
improving performance, when video streams are available.
We achieve new state-of-the-art results on the CamVid and
Cityscapes benchmark datasets and show consistent im-
provements over different baseline networks. Our code and
models are available athttp://segmentation.is.
tue.mpg.de

1. Introduction

It is fair to say that the empirical performance of seman-
tic image segmentation techniques has seen dramatic im-
provement in the recent years with the onset of Convolu-
tional Neural Network (CNN) methods. The driver of this
development have been large image segmentation datasets
and the natural next challenge is to develop fast and accurate
video segmentation methods.

The number of proposed CNN models for semantic im-
age segmentation by far outnumbers those for video data. A
naive way to use a single image CNN for video is to apply it
frame-by-frame, effectively ignoring the temporal informa-
tion altogether. However, frame-by-frame application often
yields to jittering across frames, especially at object bound-
aries. Alternative approaches include the use of conditional
random �eld (CRF) models on video data to fuse the pre-
dicted label information across frames or the development
of tailored CNN architectures for videos. A separate CRF
applied to the CNN predictions has the limitation, that it
has no access to internal representations of the CNNs. Thus

the CRF operates on a representations (the labels) that has
already been condensed. Furthermore, existing CRFs for
video data are often too slow for practical purposes.

We aim to develop a video segmentation technique that
makes use of temporal coherence in video frames and re-
use strong single image segmentation CNNs. For this, we
propose a conceptually simple approach to convert existing
image CNNs into video CNNs that uses only very little ex-
tra computational resources. We achieve this by `NetWarp',
a neural network module that warps the intermediate CNN
representations of the previous frame to the corresponding
representations of the current frame. Speci�cally, the Net-
Warp module uses the optical �ow between two adjacent
frames and then learns to transform the intermediate CNN
representations through an extra set of operations. Multi-
ple NetWarp modules can be used at different layers of the
CNN hierarchies to warp deep intermediate representations
across time, as depicted in Fig.1.

Our implementation of NetWarp takes only about 2.5
milliseconds to process an intermediate CNN representa-
tion of 128 � 128 with 1024 feature channels. It is fully
differentiable and can be learned using standard back prop-
agation techniques during training of the entire CNN net-
work. In addition, the resulting video CNN model with
NetWarp modules processes the frames in an online fash-
ion, i.e., the system has access only to the present and previ-
ous frames when predicting the segmentation of the present
frame.

We augmented several existing state-of-the-art image
segmentation CNNs using NetWarp. On the current stan-
dard video segmentation benchmarks of CamVid [2] and
Cityscapes [7], we consistently observe performance im-
provements in comparison to base network that is applied
in a frame-by-frame mode. Our video CNNs also out-
performed other recently proposed (CRF-)architectures and
video propagation techniques setting up a new state-of-the-
art on both CamVid and Cityscapes datasets.

In Section2, we discuss the related works on video seg-
mentation. In Section3, we describe the NetWarp module
and how it is used to convert image CNNs into video CNNs.
In Section4, experiments on CamVid and Cityscapes are
presented. We conclude with a discussion in Section5.
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Figure 1.Schematic of the proposed video CNN with NetWarp modules.This illustration depicts the use of NetWarp modules in three
different layers of a image CNN. The video CNN is applied in an online fashion, looking back only one frame. The CNN �lter activations
for the current frame are modi�ed by the corresponding representations of the previous frame via NetWarp modules.

2. Related Works

We limit our discussion of the literature on semantic
segmentation to those works concerning the video data.
Most semantic video segmentation approaches implement
the strategy to �rst obtain a single frame predictions using a
classi�er such as random forest or CNN, and then propagate
this information using CRFs or �ltering techniques to make
the result temporally more consistent.

One possibility to address semantic video segmentation
is by means of the 3D scene structure. Some works [3, 12,
41] build models that use 3D point clouds that have been
obtained with structure from motion. Based on these geo-
metrical and/or motion features, semantic segmentation is
improved. More recent works [27, 38] propose the joint
estimation of 2D semantics and 3D reconstruction of the
scenes from the video data. While 3D information is very
informative, it is also costly to obtain and comes with pre-
diction errors that are hard to recover from.

A more popular route [10, 4, 8, 34, 42, 28, 32] is to con-
struct large graphical models that connect different video
pixels to achieve temporal consistency across frames. The
work of [8] proposes a Perturb-and-MAP random �eld
model with spatio-temporal energy terms based on Potts
model. [4] used dynamic temporal links between the frames
but optimizes for a 2D CRF with temporal energy terms. A
3D dense CRF across video frames is constructed in [42]
and optimized using mean-�eld approximate inference. The
work of [32] proposed a joint model for predicting seman-
tic labels for supervoxels, object tracking and geometric re-
lationship between the objects. Recently, [28] proposed a
technique for optimizing the feature spaces for 3D dense
CRF across video pixels. The resulting CRF model is ap-
plied on top of the unary predictions obtained with CNN

or some other techniques. In [16], a joint model to es-
timate both optical �ow and semantic segmentation is de-
signed. [29] proposed a CRF model and an ef�ecient infer-
ence technique to fuse CNN unaries with long range spatio-
temporal cues estimated by recurrent temporal restricted
Boltzmann machine. We avoid the CRF construction and
�lter the intermediate CNN representations directly. This
results in fast runtime and a natural way to train any aug-
mented model by means of gradient descent.

More related to our technique are fast �ltering tech-
niques. For example, [34] learns a similarity function be-
tween pixels of consecutive frames to propagate predictions
across time. The approach of [18] implements a neural net-
work that uses learnable bilateral �lters [19] for long-range
propagation of information across video frames. These �l-
tering techniques propagate information after the semantic
labels are computed for each frame, whereas in contrast, our
approach does �ltering based propagation across interme-
diate CNN representations making it more integrated into
CNN training.

The use of CNNs (e.g., [33, 5]) resulted in a surge of per-
formance in semantic segmentation. But, most CNN tech-
niques work on single images. The authors of [39] observed
that the semantics change slowly across time and re-use
some intermediate representations from the previous frames
while computing segmentation for the present frame. This
results in faster runtime but a loss in accuracy. In contrast,
our approach uses adjacent frame deep representations for
consistent predictions across frames resulting in improved
prediction accuracy.

Although several works proposed neural network ap-
proaches for processing several video frames together, they
are mostly con�ned to video level tasks such as classi�ca-



NetWarpFrame(t� 1)

Compute
Flow

Transform
Flow Warp Combine

CNN1���k zk
(t� 1)

Framet

CNN1���k zk
t CNNk+1���end

Segmentationt

Ft �( Ft ) ẑk
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Figure 2.Illustration of computations in a NetWarp module. First, optical �ow Ft is computed between two video frames at time stepst
andt � 1. Then the NetWarp module transforms the �ow�( Ft ) with few convolutional layers; warps the activationszk

( t � 1) of the previous
frame and and combines the warped representations with those of the present framezk

t . The resulting representationezk
t is then passed onto

the remaining CNN layers for semantic segmentation.

tion or captioning. The works of [20, 22] use 3D convolu-
tions across frames for action recognition. In [9], LSTMs
are used in a recurrent network for recognition and caption-
ing. Two stream optical �ow and image CNNs [40, 44, 32]
are among the state-of-the-art approaches for visual action
recognition. Unlike video level tasks, pixel-level seman-
tic video segmentation requires �ltering at pixel-level. This
work proposes a way of doing local information propaga-
tion across video frames.

A related task to semantic video segmentation is video
object segmentation. Like in semantic video segmenta-
tion literature, several works [36, 30, 35, 43, 17] aim to
reduce the complexity of graphical model structure with
spatio-temporal superpixels. Some other works use nearest
neighbor �elds [11] or optical �ow [6] for estimating cor-
respondence between different frame pixels. These works
use pixel correspondences across frames to re�ne or prop-
agate labels, whereas the proposed approach re�nes the in-
termediate CNN representations with a module that is easy
to integrate into current CNN frameworks.

3. Warping Image CNNs to Video CNNs

Our aim is to convert a given CNN network architec-
ture, designed to work on single images into a segmentation
CNN for video data. Formally, given a sequence ofn video
frames denoted asI 1; I 2; � � � ; I n , the task is to predict se-
mantic segmentation for every video frame. Our aim is to
process the video frames online,i.e., the system has access
only to previous frames when predicting the segmentation
of the present frame.

The main building block will be the NetWarp module
that warps the intermediate (kth layer) CNN representations
zk

t � 1 of the previous frame and then combines with those
of the present framezk

t , wherez1
t ; z2

t ; � � � ; zm
t denote the

intermediate representations of a given image CNN withm
layers.

Motivation The design of the NetWarp module is based
on two speci�c insights from the recent semantic segmenta-
tion literature. The authors of [39] showed that intermedi-
ate CNN representations change only slowly over adjacent
frames, especially for deeper CNN layers. This inspired the
design of the clockwork convnet architecture [39]. In [13],
a bilateral inception module is constructed to average inter-
mediate CNN representations for locations across the image
that are spatially and photometrically close. There, the au-
thors use super-pixels based on runtime considerations and
demonstrated improved segmentation results when applied
to different CNN architectures. Given these �ndings, in this
work, we ask the question:Does the combination of tem-
porally close representations also leads to more stable and
consistent semantic predictions?

We �nd a positive answer to this question. Using pixel
correspondences, provided by optical �ow, to combine in-
termediate CNN representations of adjacent frames consis-
tently improves semantic predictions for a number of CNN
architectures. Especially at object boundaries and thin ob-
ject structures, we observe a solid improvement. Further,
this warping can be performed at different layers in CNN
architectures, as illustrated in Fig.1 and incurs only a tiny
extra computation cost to the entire pipeline.

3.1. NetWarp

The NetWarp module consists of multiple separate steps,
a �owchart overview is depicted in Fig.2. It takes as input,
an estimate of dense optical �ow �eld and then performs
1. �ow transformation, 2. representation warping, and 3.
combination of representations. In the following, we will
�rst discuss the optical �ow computation followed by the



description of each of the three separate steps.

Flow Computation We use existing optical �ow algo-
rithms to obtain dense pixel correspondences (denoted as
Ft ) across frames. We chose a particular fast optical �ow
method to keep the runtime small. We found that DIS-
Flow [26], which takes only about 5ms to compute �ow
per image pair (with size 640� 480) on a CPU, works well
for our purpose. Additionally, we experimented with the
more accurate but slower FlowFields [1] method that re-
quires several seconds per image pair to compute �ow. For-
mally, given an image pair,I t andI ( t � 1) , the optical �ow
algorithm computes the pixel displacement(u; v) for every
pixel location(x; y) in I t to the spatial locations(x0; y0) in
I ( t � 1) . That is, (x0; y0) = ( x + u; y + v). u and v are
�oating point numbers and represent pixel displacements
in horizontal and vertical directions respectively. Note that
we compute thereverse �owmapping the present frame lo-
cations to locations in previous frame as we want to warp
previous frame representations.

Flow Transformation Correspondences obtained with
traditional optical �ow methods might not be optimal for
propagating representations across video frames. So, we
use a small CNN to transform the pre-computed optical
�ow, which we will refer to as FlowCNN and denote the
transformation as�( Ft ). We concatenate the original two
channel �ow, the previous and present frame images, and
the difference of the two frames. This results in a 11 chan-
nel tensor as an input to the FlowCNN. The network itself
is composed of 4 convolution layers interleaved with ReLU
nonlinearities. All the convolution layers are made up of 3
� 3 �lters and the number of output channels for the �rst 3
layers are 16, 32 and 2 respectively. The output of the third
layer is then concatenated (skip connection) with the origi-
nal pre-computed �ow which is then passed on to the last 3
� 3 convolution layer to obtain �nal transformed �ow. This
network architecture is loosely inspired from the residual
blocks in ResNet [15] architectures. Other network archi-
tectures are conceivable. All parameters of FlowCNN are
learned via standard back-propagation. Learning is done on
semantic segmentation only and we do not include any su-
pervised �ow data as we are mainly interested in semantic
video segmentation. Figure5 in the experimental section
shows how the �ow transforms with the FlowCNN. We ob-
serve signi�cant transformations in the original �ow with
the FlowCNN and we will discuss more about these changes
in the experimental section.

Warping Representations The FlowCNN transforms a
dense correspondence �eld from frameI t to the previous
frameI ( t � 1) . Let us assume that we want to apply the Net-
Warp module on thekth layer of the image CNN and the
�lter activations for the adjacent frames arezk

t andzk
( t � 1)

(as in Fig2). For notational convenience, we dropk and

refer to these aszt andz( t � 1) respectively. The representa-
tions of the previous framez( t � 1) are warped to align with
the corresponding present frame representations:

ẑ( t � 1) = W arp(z( t � 1) ; �( Ft )) ; (1)

where ẑ( t � 1) denotes the warped representations,Ft is
the dense correspondence �eld and�( �) represents the
FlowCNN described above. Lets say we want to compute
the warped representationsẑ( t � 1) at a present frame's pixel
location(x; y) which is mapped to the location(x0; y0) in
the previous frame by the transformed �ow. We imple-
mentW arp as a bilinear interpolation ofz( t � 1) at the de-
sired points(x0; y0). Let (x1; y1), (x1; y2), (x2; y1) and
(x2; y2) be the corner points of the previous frame's grid
cell where(x0; y0) falls. Then the warping ofz( t � 1) to ob-
tain ẑ( t � 1) (x; y) is given as standard bilinear interpolation:

ẑ( t � 1) (x; y) = z( t � 1) (x
0; y0)

=
1
�

�
x2 � x0

x0 � x1

� > �
z( t � 1) (x1; y1) z( t � 1) (x1; y2)
z( t � 1) (x2; y1) z( t � 1) (x2; y2)

� �
y2 � y0

y0 � y1

�

(2)

where� = 1=(x2 � x1)(y2 � y1). In case(x0; y0) lies out-
side the spatial domain ofz( t � 1) , we back-project(x0; y0)
to the nearest border inz( t � 1) . The above warping func-
tion is differentiable at all the points except when the �ow
values are integer numbers. Intuitively, this is because the
the corner points used for the interpolation suddenly change
when(x0; y0) moves across from one grid cell to another. To
avoid the non-differentiable case, we add a small� of 0.0001
to the transformed �ow. This makes the warping module
differentiable with respect to both the previous frame repre-
sentations and the transformed �ow. We implement gradi-
ents using standard matrix calculus. Due to strided pooling,
deeper CNN representations are typically of smaller reso-
lution in comparison to the image signal. The same strides
are used for the transformed optical �ow to obtain the pixel
correspondences at the desired resolution.

Combination of Representations Once the warped ac-
tivations of the previous framêzk

( t � 1) are computed with
the above mentioned procedure, they are linearly combined
with the present frame representationszk

t

ezk
t = w1 � zk

t + w2 � ẑk
( t � 1) ; (3)

wherew1 andw2 are weight vectors with the same length
as the number of channels inzk ; and � represents per-
channel scalar multiplication. In other words, each channel
of the framet and the corresponding channel of the warped
representations in the previous framet � 1 are linearly com-
bined. The parametersw1; w2 are learned via standard
back-propagation. The resultezk

t is then passed on to the
remaining image CNN layers. Different computations in
the NetWarp module are illustrated in Fig.2.



PlayData-CNN (IoU: 68.9) Conv12 Conv22 Conv33 Conv43 Conv53 FC6 FC7 FC8 FC6 + FC7

+ NetWarp (without FlowCNN) 69.3 69.5 69.5 69.4 69.5 69.6 69.4 69.3 69.8
+ NetWarp (with FlowCNN) 69.6 69.6 69.6 69.5 69.7 69.8 69.7 69.5 70.2

Table 1.The effect of where NetWarp modules are inserted.Shown are test IoU scores on CamVid for augmented versions of the
PlayData-CNN. We observe an improvement (frame-by-frame results 68.9) independent of where a NetWarp is included. Re�ning the �ow
estimate typically leads to slightly better results.

Usage and Training The inclusion of NetWarp modules
still allows end-to-end training. It can be easily integrated
in different deep learning architectures. Note that back-
propagating a loss from framet will affect image CNN lay-
ers (those preceding NetWarp modules) for the present and
also previous frames. We use shared �lter weights for the
image CNN across the frames. Training is possible also
when ground truth label information is available for only
some and not all frames, which is generally the case.

Due to GPU memory constraints, we make an approxi-
mation and only use two frames at a time. Filter activations
from framet � 1 would receive updates fromt � 2 when
unrolling the architecture in time, but we ignore this ef-
fect because of the hardware memory limitations. The Net-
Warp module can be included at different depths and mul-
tiple NetWarp modules can be used to form a video CNN.
In our experiments, we used the same �ow transformation
�( �) when multiple NetWarp modules are used. We used
the Adam [23] stochastic gradient descent method for op-
timizing the network parameters. Combination weights are
initialized with w1 = 1 andw2 = 0 , so the initial video
network is identical to the single image CNN. Other Net-
Warp parameters are initialized randomly with a Gaussian
noise. All our experiments and runtime analysis were per-
formed using a Nvidia TitanX GPU and a 6 core Intel i7-
5820K CPU clocked at 3.30GHz machine. Our implemen-
tation that builds on the Caffe [21] framework is available
athttp://segmentation.is.tue.mpg.de .

4. Experiments

We evaluated the NetWarp modules using the two chal-
lenging semantic video segmentation benchmarks for which
video frames and/or annotations are available: CamVid [2]
and Cityscapes [7]. Both datasets contain real world video
sequences of street scenes. We choose different popular
CNN architectures of [47, 37, 48] and augmented them
with the NetWarp modules at different places across the
network. We follow standard protocols and report the stan-
dard Intersection over Union (IoU) score which is de�ned in
terms of true-positives (TP), false-positives (FP) and false-
negatives (FP): “TP / (TP + FP + FN)” and additionally
the instance-level iIoU for Cityscapes [7]. We are par-
ticularly interested in the segmentation effects around the
boundaries. Methods like the in�uential DenseCRFs [25]
are particularly good in segmentation of the object bound-
aries. Therefore, we adopt the methodologies from [24, 25]

and measure the IoU performance only in a narrow band
around the ground truth label changes (see Fig.17 in [24]).
We vary the width of this band and refer to this measure as
trimap-IoU (tIoU). In all the experiments, unless speci�ed,
we use a default trimap band of 2 pixels.

4.1. CamVid Dataset

The CamVid dataset contains 4 videos with ground-truth
labelling available for every 30th frame. Overall, the dataset
has 701 frames with ground-truth. For direct comparisons
with previous works, we used the same train, validation and
test splits as in [47, 28, 37]. In all our models, we use only
thetrain split for training and report the performance on the
testsplit. We introduced NetWarp modules in two popular
segmentation CNNs for this dataset: One is PlayData-CNN
from [37] and another is Dilation-CNN from [47]. Unless
otherwise mentioned, we used DIS-Flow [26] for the exper-
iments on this dataset.

With PlayData-CNN [37] as the base network, we �rst
study how the NetWarp module performs when introduced
at different stages of the network. The network architec-
ture of PlayData-CNN is made of �ve convolutional blocks,
each with 2 or 3 convolutional layers, followed by three
1� 1 convolution layers (FC layers). We add the Net-
Warp module to the following layers at various depths of
the network:Conv1 2, Conv2 2, Conv3 3, Conv4 3, Conv5 3,
FC6, FC7 andFC8 layers. The corresponding IoU scores
are reported in Tab.1. We �nd a consistent improvement
over the PlayData-CNN performance of 68.9% irrespec-
tive of the NetWarp locations in the network. Since Net-
Warp modules atFC6 and FC7 performed slightly better,
we chose to insert NetWarp at both the locations in our �nal
model with this base network. We also observe consistent
increase in IoU with the use of �ow transformation across
different NetWarp locations. Our best model with two Net-
Warp modules yields an IoU score of 70.2% which is a new
state-of-the-art on this dataset.

Adding NetWarp modules to CNN introduces very few
additional parameters. For example, two NetWarp mod-
ules at FC6 and FC7 in the PlayData-CNN have about
16K parameters, a mere 0.012% of all 134.3M parameters.
The experiments in Tab.1 indicate that improvements can
be contributed to the temporal information propagation at
multiple-depths. As a baseline, concatenating correspond-
ing FC6 andFC7 features resulted in only 0.1% IoU im-
provement compared to 1.3% using NetWarp modules.

http://segmentation.is.tue.mpg.de
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Figure 3.Qualitative results from the CamVid dataset. Notice
how NetWarp-CNN recovers some thin structures in the top row
and corrects some regions (on cyclist) in the second row.

IoU tIoU

PlayData-CNN [37] 68.9 39.0
+ NetWarp (with DIS-Flow [26]) 70.2 39.9
+ NetWarp (with FlowFields [1]) 70.3 40.1

+ VPN [18] 69.5 -

Table 2.CamVid Results using PlayData-CNN.Shown are the
IoU and tIoU scores from different methods using a fast �ow from
DIS[26] and an accurate �ow from [1] for NetWarp augmented
PlayData-CNN.

IoU tIoU Runtime (ms)

Dilation-CNN [47] 65.3 34.7 380
+ NetWarp(Ours) 67.1 36.6 395

+ FSO-CRF [28] 66.1 - > 10k
+ VPN [18] 66.7 36.1 680

Table 3.CamVid Results using Dilation-CNN.IoU, tIoU scores
and runtimes (in milliseconds) for different methods.

In Tab. 2, we show the effect of using the more accu-
rate but slower optical �ow method of Flow�elds [1]. Re-
sults indicate that there is only a 0.1% improvement in IoU
with Flow�elds but this incurs a much higher runtime for
�ow computation. Results also indicate that our approach
outperformed the current state-of-the-art approach of VPN
from [18] by a signi�cant margin of 0.8% IoU, while being
faster.

As a second network, we choose the dilation CNN
from [47]. This network consists of a standard CNN fol-
lowed by a context module with 8 dilated convolutional
layers. For this network, we apply the NetWarp module
on the output of each of these 8 dilated convolutions. Ta-
ble3 shows the performance and runtime comparisons with
the dilation CNN and other related techniques. With a run-
time increase of 15 milliseconds, we observe signi�cant im-
provements in the order of 1.8% IoU. The runtime increase
assumes that the result of the previous frame is already com-
puted, which is the case for video segmentation.

4.2. Cityscapes Dataset

The Cityscapes dataset [7] comes with a total of 5000
video sequences of high-quality images (2048� 1024 res-
olution), partitioned into 2975 train, 500 validation and

1525 test sequences. The videos are captured in different
weather conditions across 50 different cities in Germany
and Switzerland. In addition to the IoU and tIoU per-
formance metrics, we report the instance-level IoU score.
Since IoU score is dominated by large objects/regions (such
as road) in the scene, the makers of this dataset proposed the
iIoU score that takes into account the relative size of differ-
ent objects/regions. The iIoU score is given as iTP/(iTP +
FP + iFN), where iTP and iFN are the modi�ed true-positive
and false-negative scores which are computed by weighting
the contribution of each pixel by the ratio of the average
class instance size to the size of the respective ground truth
instance. This measures how well the semantic labelling
represents the individual instances in the scene. For more
details on this metric, please refer to the original dataset
paper [7]. For this dataset, we used DIS-Flow [26] for all
networks augmented with NetWarp modules.

We choose the recently proposed Pyramid Scene Parsing
Network (PSPNet) from [48]. Because of high-resolution
images in Cityscapes and GPU memory limitations, PSP-
Net is applied in a sliding window fashion with a window
size of 713� 713. To achieve higher segmentation perfor-
mance, the authors of [48] also evaluated a multi-scale ver-
sion. Applying thesamePSPNet on 6 different scales of an
input image results to an improvement of 1.4% IoU over the
single-scale variant. This increased performance comes at
the cost of increased runtime. In the single-scale setting, the
network is evaluated on 8 different windows to get a full im-
age result, whereas in the multi-scale setting, the network is
evaluated 81 times leading to 10 times increase in runtime.
We refer to the single-scale and multi-scale evaluations as
PSPNet-SSc and PSPNet-MSc respectively.

The architecture of PSPNet is a ResNet101 [15] network
variant with pyramid style pooling layers. We insert Net-
Warp modules before and after the pyramid pooling lay-
ers. More precisely, NetWarp modules are added on both
the Conv4 23 andConv5 4 representations. The network is
then �ne-tuned with 2975 train video sequences without any
data augmentation. We evaluate both the single-scale and
multi-scale variants. Table4 summarizes the quantitative
results with and without NetWarp modules, on validation
data scenes of Cityscapes. We �nd an improvement of the
IoU (by 1.2), tIoU (by 2.4) and iIoU (by 1.4) respectively
over the single image PSPNet-SSc variant. These improve-
ments come with a low runtime overhead of 24 millisec-
onds. Also the augmented multi-scale network improves all
measures: IoU by 0.7, tIoU by 1.8, and iIoU by 1.4%.

We chose to submit the results of the best perform-
ing method from the validation set to the Cityscapes test
server. Results are shown in Tab.5. We �nd that the Net-
Warp augmented PSP multi-scale variant is on par with the
current top performing method [46] (80.5 vs. 80.6) and
out-performs current top models in terms of iIoU by a sig-



IoU iIoU tIoU Runtime (s)

PSPNet-SSc [48] 79.4 60.7 39.7 3.00
+NetWarp 80.6 62.1 42.1 3.04

PSPNet-MSc [48] 80.8 62.2 41.5 30.3
+NetWarp 81.5 63.6 43.3 30.5

Table 4.Performance of PSPNet with NetWarp modules on the
Cityscapes validation dataset.We observe consistent improve-
ments with NetWarp modules across all three performance mea-
sures in both the single-scale (SSc) and multi-scale (MSc) settings,
while only adding little time overhead.

ni�cant margin of 1.4%. In summary, at submission time,
our result is best performing method in iIoU and second on
IoU1. Surprisingly, it is the only approach that uses video
data. A closer look into class IoU score in Tab.5 shows
that our approach works particularly well for parsing thin
structures like poles, traf�c lights, traf�c signs etc. The im-
provement is around 4% IoU for the pole class. Another ob-
servation is that adding NetWarp modules resulted in slight
IoU performance decrease for few broad object classes such
as car, truck etc. However, we �nd consistent improvements
across most of the classes in other performance measures.
The classwise iIoU scores that are computed on broad ob-
ject classes like car, bus etc show better performance on 7
out of 8 classes for NetWarp. Further, analysing the class-
wise tIoU scores on the validation set, we �nd that Net-
Warpperforms better on 17 out of 19 classes. Visual re-
sults in Fig.6 also indicate that the thin structures are better
parsed with the introduction of NetWarp modules. Qualita-
tively, we �nd improved performance near boundaries com-
pared to baseline CNN (see supplementary video). Visual
results in Fig.6 also indicate that NetWarp helps in rectify-
ing the segmentation of big regions as well.

In Fig. 4, we show the relative improvement of the Net-
Warp augmented PSPNet for different widths in the trimap-
IoU. From this analysis we can conclude that the IoU im-
provement is especially due to better performance near ob-
ject boundary. This is true for both the single and the multi-
scale version of the network. Image CNNs, in general, are
very good at segmenting large regions or objects like road or
cars. However, thin and �ne structures are dif�cult to parse
as information is lost due to strided operations inside CNN.
In part this is recovered by NetWarp CNNs that use the tem-
poral context to recover thin structures. In Fig.6, some
qualitative results with static image CNN and our video
CNN are shown. We observe that the NetWarp module cor-
rect for thin structures but also frequently correct larger re-
gions of wrong segmentations. This is possible since repre-
sentations for the same regions are combined over different
frames leading to a more robust classi�cation.

Next, we analyze how the DIS-Flow is transformed by
the FlowCNN. Figure5 shows some visualizations of the

1https://www.cityscapes-dataset.com/benchmarks/
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Figure 4. tIoU improvement. Relative improvements of IoU
within trimaps as a function of trimap width. Most improvement
is in regions close to object boundaries.
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Figure 5.Effect of �ow transformation. Example results of in-
put and transformed �ow, after training for semantic segmentation.
There is a qualitative difference between CamVid and CityScapes.
Best viewed on screen.

transformed �ow along with the original DIS Flow �elds.
We can clearly observe that, in both CamVid and Cityscapes
images, the structure of the scene is much more pronounced
in the transformed �ow indicating that the traditionally
computed �ow might not be optimal to �nd pixel correspon-
dences for semantic segmentation.

5. Conclusions and Outlook

We presented NetWarp, an ef�cient and conceptually
easy way to transform image CNNs into video CNNs. The
main concept is to transfer intermediate CNN �lter activ-

https://www.cityscapes-dataset.com/benchmarks/


Figure 6.Qualitative results from the Cityscapes dataset. Observe how NetWarp-PSPNet is able to correct larger parts of wrong
segmentation (top two rows) by warping activations across frames. The bottom row shows an example of improved segmentation of a thin
structure. All results shown are obtained with the multi-scale versions.
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PSPNet-MSc [48] 58.1 80.2 98.6 86.6 93.2 58.1 63.0 64.5 75.2 79.2 93.4 72.1 95.1 86.3 71.4 96.0 73.6 90.4 80.4 69.9 76.9
+NetWarp(Ours) 59.5 80.5 98.6 86.7 93.4 60.6 62.6 68.6 75.9 80.0 93.5 72.0 95.3 86.5 72.1 95.9 72.9 90.0 77.4 70.5 76.4

ResNet-38 [46] 57.8 80.6 98.7 87.0 93.3 60.4 62.9 67.6 75.0 78.7 93.7 73.7 95.5 86.8 71.1 96.1 75.2 87.6 81.9 69.8 76.7
TuSimple [45] 56.9 80.1 98.6 85.9 93.2 57.7 61.2 67.2 73.7 78.0 93.4 72.3 95.4 85.9 70.5 95.9 76.1 90.6 83.7 67.4 75.7
LRR-4X [14] 47.9 71.9 98.0 81.5 91.4 50.5 52.7 59.4 66.8 72.7 92.5 70.1 95.0 81.3 60.1 94.3 51.2 67.7 54.6 55.6 69.6
Re�neNet [31] 47.2 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0

Table 5.Results on the Cityscapes test dataset.Average iIoU, IoU and class IoU scores of base PSPNet, with NetWarp modules and
also other top performing methods taken from the Cityscapes benchmark website at the time of submission. The NetWarp augmented
PSPNet-MSc version achieves highest iIoU and is about on par with [46] on IoU. Our video methods performs particularly well on small
classes such as poles, traf�c lights etc.

ities of adjacent frames based on transformed optical �ow
estimate. The resulting video CNN is end-to-end trainable,
runs in an online fashion and has only a small computation
overhead in comparison to the frame-by-frame application.
Experiments on the current standard benchmark datasets
CityScapes and CamVid show improved performance for
several strong baseline methods. The �nal model sets a
new state-of-the-art performance on both CityScapes and
CamVid.

Extensive experimental analysis provide insights into the
workings of the NetWarp module. First, we demonstrate
consistent performance improvements across different im-
age CNN hierarchies. Second, we �nd more temporally
consistent semantic predictions and better coverage of thin
structures such as poles and traf�c signs. Third, we ob-
served that the �ow changed radically after the transforma-
tion (FlowCNN) trained with the segmentation loss. From
the qualitative results, it seems that the optical �ow at the
object boundaries is important for semantic segmentation.
An interesting future work is to systematically study what

properties of optical �ow estimation are necessary for se-
mantic segmentation and the impact of different types of
interpolation in a NetWarp module.

Another future direction is to scale the video CNNs to
use multiple frames. Due to GPU memory limitations and
to keep training easier, here, we trained with only two ad-
jacent frames at a time. In part this is due to the memory
demanding base models like ResNet101. Memory optimiz-
ing the CNN training would alleviate some of the problems
and enables training with many frames together. We also
envision that the �ndings of this paper are interesting for
the design of video CNNs for different tasks other than se-
mantic segmentation.
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