Department Talks

Building Multi-Family Animal Models

Talk
  • 07 April 2017 • 11:00 12:00
  • Silvia Zuffi
  • Aquarium, N.3.022, Spemannstr. 34, third floor

There has been significant prior work on learning realistic, articulated, 3D statistical shape models of the human body. In contrast, there are few such models for animals, despite their many applications in biology, neuroscience, agriculture, and entertainment. The main challenge is that animals are much less cooperative subjects than humans: the best human body models are learned from thousands of 3D scans of people in specific poses, which is infeasible with live animals. In the talk I will illustrate how we extend a state-of-the-art articulated 3D human body model (SMPL) to animals learning from toys a multi-family shape space that can represent lions, cats, dogs, horses, cows and hippos. The generalization of the model is illustrated by fitting it to images of real animals, where it captures realistic animal shapes, even for new species not seen in training.

  • Trevor Darrell

Methods for visual recognition have made dramatic strides in recent years on various online benchmarks, but performance in the real world still often falters. Classic gradient-histogram models make overly simplistic assumptions regarding image appearance statistics, both locally and globally. Recent progress suggests that new learning-based representations can improve recognition by devices that are embedded in a physical world.

I'll review new methods for domain adaptation which capture the visual domain shift between environments, and improve recognition of objects in specific places when trained from generic online sources. I'll discuss methods for cross-modal semi-supervised learning, which can leverage additional unlabeled modalities in a test environment.

Finally as time permits I'll present recent results learning hierarchical local image representations based on recursive probabilistic topic models, on learning strong object color models from sets of uncalibrated views using a new multi-view color constancy paradigm, and/or on recent results on monocular estimation of grasp affordances.


  • Stan Sclaroff

In the first part of the talk, I will describe methods that learn a single family of detectors for object classes that exhibit large within-class variation. One common solution is to use a divide-and-conquer strategy, where the space of possible within-class variations is partitioned, and different detectors are trained for different partitions.

However, these discrete partitions tend to be arbitrary in continuous spaces, and the classifiers have limited power when there are too few training samples in each subclass. To address this shortcoming, explicit feature sharing has been proposed, but it also makes training more expensive. We show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. The multiplicative kernel formulation enables feature sharing implicitly; the solution for the optimal sharing is a byproduct of SVM learning.

The resulting detector family is tuned to specific variations in the foreground. The effectiveness of this framework is demonstrated in experiments that involve detection, tracking, and pose estimation of human hands, faces, and vehicles in video.