avg ps Thumb sm osman la vaccey2
Osman Ulusoy (Project leader)
Postdoctoral Researcher
avg ps Thumb sm portrait 01
Andreas Geiger
Max Planck Research Group Leader
ps Thumb sm ports 160922 1261headcrop2
Michael Black
2 results


Thumb md capital
Patches, Planes and Probabilities: A Non-local Prior for Volumetric 3D Reconstruction

Ulusoy, A., Black, M. J., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

In this paper, we propose a non-local structured prior for volumetric multi-view 3D reconstruction. Towards this goal, we present a novel Markov random field model based on ray potentials in which assumptions about large 3D surface patches such as planarity or Manhattan world constraints can be efficiently encoded as probabilistic priors. We further derive an inference algorithm that reasons jointly about voxels, pixels and image segments, and estimates marginal distributions of appearance, occupancy, depth, normals and planarity. Key to tractable inference is a novel hybrid representation that spans both voxel and pixel space and that integrates non-local information from 2D image segmentations in a principled way. We compare our non-local prior to commonly employed local smoothness assumptions and a variety of state-of-the-art volumetric reconstruction baselines on challenging outdoor scenes with textureless and reflective surfaces. Our experiments indicate that regularizing over larger distances has the potential to resolve ambiguities where local regularizers fail.

YouTube pdf poster suppmat Project Page [BibTex]


Thumb md teaser
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

code YouTube pdf suppmat DOI Project Page [BibTex]


code YouTube pdf suppmat DOI Project Page [BibTex]