31 results

2012


Thumb md coregtr
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf Project Page [BibTex]

2012

pdf Project Page [BibTex]


Thumb md coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M. J., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

European patent application EP12187467.1 and US Provisional Application, October 2012 (patent)

Project Page [BibTex]

Project Page [BibTex]

2015


Thumb md dynateaser
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

pdf preprint video data DOI Project Page Project Page Project Page [BibTex]

2015

pdf preprint video data DOI Project Page Project Page Project Page [BibTex]


Thumb md bogo iccv2015 teaser
Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences

Bogo, F., Black, M. J., Loper, M., Romero, J.

In International Conference on Computer Vision (ICCV), pages: 2300-2308, December 2015 (inproceedings)

Abstract
We accurately estimate the 3D geometry and appearance of the human body from a monocular RGB-D sequence of a user moving freely in front of the sensor. Range data in each frame is first brought into alignment with a multi-resolution 3D body model in a coarse-to-fine process. The method then uses geometry and image texture over time to obtain accurate shape, pose, and appearance information despite unconstrained motion, partial views, varying resolution, occlusion, and soft tissue deformation. Our novel body model has variable shape detail, allowing it to capture faces with a high-resolution deformable head model and body shape with lower-resolution. Finally we combine range data from an entire sequence to estimate a high-resolution displacement map that captures fine shape details. We compare our recovered models with high-resolution scans from a professional system and with avatars created by a commercial product. We extract accurate 3D avatars from challenging motion sequences and even capture soft tissue dynamics.

Video pdf Project Page Project Page [BibTex]

Video pdf Project Page Project Page [BibTex]

2011


Thumb md iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

pdf YouTube poster Project Page Project Page [BibTex]

2011

pdf YouTube poster Project Page Project Page [BibTex]

2009


Thumb md patent2009
Method and Apparatus for Estimating Body Shape

Black, M. J., Balan, A., Weiss, A., Sigal, L., Loper, M., St Clair, T.

US (12/541,898) and PCT patent application, US (12/541,898) and PCT patent application, August 2009 (patent)

freepatents on line version with images USPTO version Project Page [BibTex]

2009

freepatents on line version with images USPTO version Project Page [BibTex]

2016


Thumb md appealingavatarsbig
Appealing female avatars from 3D body scans: Perceptual effects of stylization

Fleming, R., Mohler, B., Romero, J., Black, M. J., Breidt, M.

In 11th Int. Conf. on Computer Graphics Theory and Applications (GRAPP), Febuary 2016 (inproceedings)

Abstract
Advances in 3D scanning technology allow us to create realistic virtual avatars from full body 3D scan data. However, negative reactions to some realistic computer generated humans suggest that this approach might not always provide the most appealing results. Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was most effective, increasing average appeal ratings by approximately 34%.

pdf Project Page [BibTex]

2016

pdf Project Page [BibTex]

2015


Thumb md sap2015
Perception of Strength and Power of Realistic Male Characters

Wellerdiek, A., Breidt, M., Geuss, M., Streuber, S., Kloos, U., Black, M. J., Mohler, B.

In Proc. ACM SIGGRAPH Symposium on Applied Perception, SAP’15, pages: 7-14, ACM, New York, NY, September 2015 (inproceedings)

Abstract
We investigated the influence of body shape and pose on the perception of physical strength and social power for male virtual characters. In the first experiment, participants judged the physical strength of varying body shapes, derived from a statistical 3D body model. Based on these ratings, we determined three body shapes (weak, average, and strong) and animated them with a set of power poses for the second experiment. Participants rated how strong or powerful they perceived virtual characters of varying body shapes that were displayed in different poses. Our results show that perception of physical strength was mainly driven by the shape of the body. However, the social attribute of power was influenced by an interaction between pose and shape. Specifically, the effect of pose on power ratings was greater for weak body shapes. These results demonstrate that a character with a weak shape can be perceived as more powerful when in a high-power pose.

PDF DOI Project Page [BibTex]

2015

PDF DOI Project Page [BibTex]

2013


Thumb md perception
Viewpoint and pose in body-form adaptation

Sekunova, A., Black, M. J., Parkinson, L., Barton, J.

Perception, 42(2):176-186, 2013 (article)

Abstract
Faces and bodies are complex structures, perception of which can play important roles in person identification and inference of emotional state. Face representations have been explored using behavioural adaptation: in particular, studies have shown that face aftereffects show relatively broad tuning for viewpoint, consistent with origin in a high-level structural descriptor far removed from the retinal image. Our goals were to determine first, if body aftereffects also showed a degree of viewpoint invariance, and second if they also showed pose invariance, given that changes in pose create even more dramatic changes in the 2-D retinal image. We used a 3-D model of the human body to generate headless body images, whose parameters could be varied to generate different body forms, viewpoints, and poses. In the first experiment, subjects adapted to varying viewpoints of either slim or heavy bodies in a neutral stance, followed by test stimuli that were all front-facing. In the second experiment, we used the same front-facing bodies in neutral stance as test stimuli, but compared adaptation from bodies in the same neutral stance to adaptation with the same bodies in different poses. We found that body aftereffects were obtained over substantial viewpoint changes, with no significant decline in aftereffect magnitude with increasing viewpoint difference between adapting and test images. Aftereffects also showed transfer across one change in pose but not across another. We conclude that body representations may have more viewpoint invariance than faces, and demonstrate at least some transfer across pose, consistent with a high-level structural description. Keywords: aftereffect, shape, face, representation

pdf from publisher abstract pdf link (url) Project Page [BibTex]

2013

pdf from publisher abstract pdf link (url) Project Page [BibTex]

2014


Thumb md icmlteaser
Preserving Modes and Messages via Diverse Particle Selection

Pacheco, J., Zuffi, S., Black, M. J., Sudderth, E.

In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 32(1):1152-1160, J. Machine Learning Research Workshop and Conf. and Proc., Beijing, China, June 2014 (inproceedings)

Abstract
In applications of graphical models arising in domains such as computer vision and signal processing, we often seek the most likely configurations of high-dimensional, continuous variables. We develop a particle-based max-product algorithm which maintains a diverse set of posterior mode hypotheses, and is robust to initialization. At each iteration, the set of hypotheses at each node is augmented via stochastic proposals, and then reduced via an efficient selection algorithm. The integer program underlying our optimization-based particle selection minimizes errors in subsequent max-product message updates. This objective automatically encourages diversity in the maintained hypotheses, without requiring tuning of application-specific distances among hypotheses. By avoiding the stochastic resampling steps underlying particle sum-product algorithms, we also avoid common degeneracies where particles collapse onto a single hypothesis. Our approach significantly outperforms previous particle-based algorithms in experiments focusing on the estimation of human pose from single images.

pdf SupMat link (url) Project Page Project Page [BibTex]

2014

pdf SupMat link (url) Project Page Project Page [BibTex]

2012


Thumb md soumyanips
From Deformations to Parts: Motion-based Segmentation of 3D Objects

Ghosh, S., Sudderth, E., Loper, M., Black, M. J.

In Advances in Neural Information Processing Systems 25 (NIPS), pages: 2006-2014, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
We develop a method for discovering the parts of an articulated object from aligned meshes of the object in various three-dimensional poses. We adapt the distance dependent Chinese restaurant process (ddCRP) to allow nonparametric discovery of a potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying 3D shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured in dozens of poses, we infer parts which provide quantitatively better deformation predictions than conventional clustering methods.

pdf supplemental code poster link (url) Project Page [BibTex]

2012

pdf supplemental code poster link (url) Project Page [BibTex]


Thumb md frompstods2
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

pdf sup mat code poster Project Page Project Page [BibTex]

pdf sup mat code poster Project Page Project Page [BibTex]

2011


Thumb md sigalijcv11
Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation

Sigal, L., Isard, M., Haussecker, H., Black, M. J.

International Journal of Computer Vision, 98(1):15-48, Springer Netherlands, May 2011 (article)

Abstract
We formulate the problem of 3D human pose estimation and tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected body-parts. In particular, we model the body using an undirected graphical model in which nodes correspond to parts and edges to kinematic, penetration, and temporal constraints imposed by the joints and the world. These constraints are encoded using pair-wise statistical distributions, that are learned from motion-capture training data. Human pose and motion estimation is formulated as inference in this graphical model and is solved using Particle Message Passing (PaMPas). PaMPas is a form of non-parametric belief propagation that uses a variation of particle filtering that can be applied over a general graphical model with loops. The loose-limbed model and decentralized graph structure allow us to incorporate information from "bottom-up" visual cues, such as limb and head detectors, into the inference process. These detectors enable automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking people in multi-view imagery using a set of calibrated cameras and present quantitative evaluation using the HumanEva dataset.

pdf publisher's site link (url) Project Page Project Page [BibTex]

2011

pdf publisher's site link (url) Project Page Project Page [BibTex]

2014


Thumb md faust
FAUST: Dataset and evaluation for 3D mesh registration

(Dataset Award, Eurographics Symposium on Geometry Processing (SGP), 2016)

Bogo, F., Romero, J., Loper, M., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3794 -3801, Columbus, Ohio, USA, June 2014 (inproceedings)

Abstract
New scanning technologies are increasing the importance of 3D mesh data and the need for algorithms that can reliably align it. Surface registration is important for building full 3D models from partial scans, creating statistical shape models, shape retrieval, and tracking. The problem is particularly challenging for non-rigid and articulated objects like human bodies. While the challenges of real-world data registration are not present in existing synthetic datasets, establishing ground-truth correspondences for real 3D scans is difficult. We address this with a novel mesh registration technique that combines 3D shape and appearance information to produce high-quality alignments. We define a new dataset called FAUST that contains 300 scans of 10 people in a wide range of poses together with an evaluation methodology. To achieve accurate registration, we paint the subjects with high-frequency textures and use an extensive validation process to ensure accurate ground truth. We find that current shape registration methods have trouble with this real-world data. The dataset and evaluation website are available for research purposes at http://faust.is.tue.mpg.de.

pdf Video Dataset Poster Talk DOI Project Page Project Page [BibTex]

2014

pdf Video Dataset Poster Talk DOI Project Page Project Page [BibTex]

2012


Thumb md coregteaser
Coregistration: Simultaneous alignment and modeling of articulated 3D shape

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 242-255, LNCS 7577, Part IV, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional (3D) shape models are powerful because they enable the inference of object shape from incomplete, noisy, or ambiguous 2D or 3D data. For example, realistic parameterized 3D human body models have been used to infer the shape and pose of people from images. To train such models, a corpus of 3D body scans is typically brought into registration by aligning a common 3D human-shaped template to each scan. This is an ill-posed problem that typically involves solving an optimization problem with regularization terms that penalize implausible deformations of the template. When aligning a corpus, however, we can do better than generic regularization. If we have a model of how the template can deform then alignments can be regularized by this model. Constructing a model of deformations, however, requires having a corpus that is already registered. We address this chicken-and-egg problem by approaching modeling and registration together. By minimizing a single objective function, we reliably obtain high quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly realistic articulated body model. The model greatly improves robustness to noise and missing data. Since the model explains a corpus of body scans, it captures how body shape varies across people and poses.

pdf publisher site poster supplemental material (400MB) Project Page [BibTex]

2012

pdf publisher site poster supplemental material (400MB) Project Page [BibTex]

2011


Thumb md lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

pdf slides DOI Project Page [BibTex]

2011

pdf slides DOI Project Page [BibTex]


Thumb md dagm2011imagesmall
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

pdf talk Project Page [BibTex]

pdf talk Project Page [BibTex]

2016


Thumb md psychscience
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M., Streuber, S., Hahn, C., Black, M. J., O’Toole, A.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

pdf Project Page [BibTex]

2016

pdf Project Page [BibTex]


Thumb md webteaser
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M., Hill, M., Hahn, C., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

pdf web tool video talk (ppt) Project Page [BibTex]

pdf web tool video talk (ppt) Project Page [BibTex]

2014


Thumb md miccai
Automated Detection of New or Evolving Melanocytic Lesions Using a 3D Body Model

Bogo, F., Romero, J., Peserico, E., Black, M. J.

In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 8673, pages: 593-600, Lecture Notes in Computer Science, (Editors: Golland, Polina and Hata, Nobuhiko and Barillot, Christian and Hornegger, Joachim and Howe, Robert), Spring International Publishing, September 2014 (inproceedings)

Abstract
Detection of new or rapidly evolving melanocytic lesions is crucial for early diagnosis and treatment of melanoma.We propose a fully automated pre-screening system for detecting new lesions or changes in existing ones, on the order of 2 - 3mm, over almost the entire body surface. Our solution is based on a multi-camera 3D stereo system. The system captures 3D textured scans of a subject at diff erent times and then brings these scans into correspondence by aligning them with a learned, parametric, non-rigid 3D body model. This means that captured skin textures are in accurate alignment across scans, facilitating the detection of new or changing lesions. The integration of lesion segmentation with a deformable 3D body model is a key contribution that makes our approach robust to changes in illumination and subject pose.

pdf Poster DOI Project Page [BibTex]

2014

pdf Poster DOI Project Page [BibTex]


Thumb md sap copy
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M. J., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]

2009


Thumb md iccv09
Estimating human shape and pose from a single image

Guan, P., Weiss, A., Balan, A., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1381-1388, 2009 (inproceedings)

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]

2009

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]

2012


Thumb md pengthesisteaser
Virtual Human Bodies with Clothing and Hair: From Images to Animation

Guan, P.

Brown University, Department of Computer Science, December 2012 (phdthesis)

pdf Project Page [BibTex]

2012

pdf Project Page [BibTex]


Thumb md representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]

2015


Thumb md splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

pdf video code/model errata DOI Project Page [BibTex]

2015

pdf video code/model errata DOI Project Page [BibTex]


Thumb md silviateaser
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose

Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 3537-3546, June 2015 (inproceedings)

Abstract
We propose a new 3D model of the human body that is both realistic and part-based. The body is represented by a graphical model in which nodes of the graph correspond to body parts that can independently translate and rotate in 3D as well as deform to capture pose-dependent shape variations. Pairwise potentials define a “stitching cost” for pulling the limbs apart, giving rise to the stitched puppet model (SPM). Unlike existing realistic 3D body models, the distributed representation facilitates inference by allowing the model to more effectively explore the space of poses, much like existing 2D pictorial structures models. We infer pose and body shape using a form of particle-based max-product belief propagation. This gives the SPM the realism of recent 3D body models with the computational advantages of part-based models. We apply the SPM to two challenging problems involving estimating human shape and pose from 3D data. The first is the FAUST mesh alignment challenge (http://faust.is.tue.mpg.de/), where ours is the first method to successfully align all 3D meshes. The second involves estimating pose and shape from crude visual hull representations of complex body movements.

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

2010


Thumb md contourpersonimagesmall
Contour people: A parameterized model of 2D articulated human shape

Freifeld, O., Weiss, A., Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR), pages: 639-646, IEEE, June 2010 (inproceedings)

pdf slides video of CVPR talk Project Page Project Page [BibTex]

2010

pdf slides video of CVPR talk Project Page Project Page [BibTex]

2012


Thumb md paperfig
Lie Bodies: A Manifold Representation of 3D Human Shape

Freifeld, O., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deformations and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more meaningful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of modeling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analysis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods.

pdf supplemental material youtube poster eigenshape video code Project Page Project Page [BibTex]

2012

pdf supplemental material youtube poster eigenshape video code Project Page Project Page [BibTex]

2014


Thumb md aggteaser
Model-based Anthropometry: Predicting Measurements from 3D Human Scans in Multiple Poses

Tsoli, A., Loper, M., Black, M. J.

In Proceedings Winter Conference on Applications of Computer Vision, pages: 83-90, IEEE , March 2014 (inproceedings)

Abstract
Extracting anthropometric or tailoring measurements from 3D human body scans is important for applications such as virtual try-on, custom clothing, and online sizing. Existing commercial solutions identify anatomical landmarks on high-resolution 3D scans and then compute distances or circumferences on the scan. Landmark detection is sensitive to acquisition noise (e.g. holes) and these methods require subjects to adopt a specific pose. In contrast, we propose a solution we call model-based anthropometry. We fit a deformable 3D body model to scan data in one or more poses; this model-based fitting is robust to scan noise. This brings the scan into registration with a database of registered body scans. Then, we extract features from the registered model (rather than from the scan); these include, limb lengths, circumferences, and statistical features of global shape. Finally, we learn a mapping from these features to measurements using regularized linear regression. We perform an extensive evaluation using the CAESAR dataset and demonstrate that the accuracy of our method outperforms state-of-the-art methods.

pdf DOI Project Page Project Page [BibTex]

2014

pdf DOI Project Page Project Page [BibTex]


Thumb md fancy rgb
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

pdf video link (url) DOI Project Page [BibTex]

pdf video link (url) DOI Project Page [BibTex]


Thumb md mosh heroes icon
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

pdf video data pdf from publisher link (url) DOI Project Page [BibTex]

pdf video data pdf from publisher link (url) DOI Project Page [BibTex]