Header logo is ps


2020


STAR: Sparse Trained Articulated Human Body Regressor
STAR: Sparse Trained Articulated Human Body Regressor

Osman, A. A. A., Bolkart, T., Black, M. J.

In European Conference on Computer Vision (ECCV) , August 2020 (inproceedings)

Abstract
The SMPL body model is widely used for the estimation, synthesis, and analysis of 3D human pose and shape. While popular, we show that SMPL has several limitations and introduce STAR, which is quantitatively and qualitatively superior to SMPL. First, SMPL has a huge number of parameters resulting from its use of global blend shapes. These dense pose-corrective offsets relate every vertex on the mesh to all the joints in the kinematic tree, capturing spurious long-range correlations. To address this, we define per-joint pose correctives and learn the subset of mesh vertices that are influenced by each joint movement. This sparse formulation results in more realistic deformations and significantly reduces the number of model parameters to 20% of SMPL. When trained on the same data as SMPL, STAR generalizes better despite having many fewer parameters. Second, SMPL factors pose-dependent deformations from body shape while, in reality, people with different shapes deform differently. Consequently, we learn shape-dependent pose-corrective blend shapes that depend on both body pose and BMI. Third, we show that the shape space of SMPL is not rich enough to capture the variation in the human population. We address this by training STAR with an additional 10,000 scans of male and female subjects, and show that this results in better model generalization. STAR is compact, generalizes better to new bodies and is a drop-in replacement for SMPL. STAR is publicly available for research purposes at http://star.is.tue.mpg.de.

Project Page Code Video paper supplemental [BibTex]


Monocular Expressive Body Regression through Body-Driven Attention
Monocular Expressive Body Regression through Body-Driven Attention

Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M. J.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
To understand how people look, interact, or perform tasks,we need to quickly and accurately capture their 3D body, face, and hands together from an RGB image. Most existing methods focus only on parts of the body. A few recent approaches reconstruct full expressive 3D humans from images using 3D body models that include the face and hands. These methods are optimization-based and thus slow, prone to local optima, and require 2D keypoints as input. We address these limitations by introducing ExPose (EXpressive POse and Shape rEgression), which directly regresses the body, face, and hands, in SMPL-X format, from an RGB image. This is a hard problem due to the high dimensionality of the body and the lack of expressive training data. Additionally, hands and faces are much smaller than the body, occupying very few image pixels. This makes hand and face estimation hard when body images are downscaled for neural networks. We make three main contributions. First, we account for the lack of training data by curating a dataset of SMPL-X fits on in-the-wild images. Second, we observe that body estimation localizes the face and hands reasonably well. We introduce body-driven attention for face and hand regions in the original image to extract higher-resolution crops that are fed to dedicated refinement modules. Third, these modules exploit part-specific knowledge from existing face and hand-only datasets. ExPose estimates expressive 3D humans more accurately than existing optimization methods at a small fraction of the computational cost. Our data, model and code are available for research at https://expose.is.tue.mpg.de.

code Short video Long video arxiv pdf suppl link (url) Project Page [BibTex]


GRAB: A Dataset of Whole-Body Human Grasping of Objects
GRAB: A Dataset of Whole-Body Human Grasping of Objects

Taheri, O., Ghorbani, N., Black, M. J., Tzionas, D.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Training computers to understand, model, and synthesize human grasping requires a rich dataset containing complex 3D object shapes, detailed contact information, hand pose and shape, and the 3D body motion over time. While "grasping" is commonly thought of as a single hand stably lifting an object, we capture the motion of the entire body and adopt the generalized notion of "whole-body grasps". Thus, we collect a new dataset, called GRAB (GRasping Actions with Bodies), of whole-body grasps, containing full 3D shape and pose sequences of 10 subjects interacting with 51 everyday objects of varying shape and size. Given MoCap markers, we fit the full 3D body shape and pose, including the articulated face and hands, as well as the 3D object pose. This gives detailed 3D meshes over time, from which we compute contact between the body and object. This is a unique dataset, that goes well beyond existing ones for modeling and understanding how humans grasp and manipulate objects, how their full body is involved, and how interaction varies with the task. We illustrate the practical value of GRAB with an example application; we train GrabNet, a conditional generative network, to predict 3D hand grasps for unseen 3D object shapes. The dataset and code are available for research purposes at https://grab.is.tue.mpg.de.

pdf suppl video (long) video (short) link (url) DOI [BibTex]

pdf suppl video (long) video (short) link (url) DOI [BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), pages: 6468-6477, IEEE, June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

Project page Code Short video Long video arXiv DOI [BibTex]

Project page Code Short video Long video arXiv DOI [BibTex]


{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), pages: 6194-6204, June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

Code PDF DOI [BibTex]

Code PDF DOI [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, pages: 5123-5132, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 5252-5262, IEEE, June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

arXiv code video supplemental video DOI Project Page [BibTex]

arXiv code video supplemental video DOI Project Page [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference)

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), pages: 5561-5569, Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

pdf [BibTex]

2017


A Generative Model of People in Clothing
A Generative Model of People in Clothing

Lassner, C., Pons-Moll, G., Gehler, P. V.

In Proceedings IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, USA, October 2017 (inproceedings)

Abstract
We present the first image-based generative model of people in clothing in a full-body setting. We sidestep the commonly used complex graphics rendering pipeline and the need for high-quality 3D scans of dressed people. Instead, we learn generative models from a large image database. The main challenge is to cope with the high variance in human pose, shape and appearance. For this reason, pure image-based approaches have not been considered so far. We show that this challenge can be overcome by splitting the generating process in two parts. First, we learn to generate a semantic segmentation of the body and clothing. Second, we learn a conditional model on the resulting segments that creates realistic images. The full model is differentiable and can be conditioned on pose, shape or color. The result are samples of people in different clothing items and styles. The proposed model can generate entirely new people with realistic clothing. In several experiments we present encouraging results that suggest an entirely data-driven approach to people generation is possible.

link (url) Project Page [BibTex]

2017

link (url) Project Page [BibTex]


Semantic Video CNNs through Representation Warping
Semantic Video CNNs through Representation Warping

Gadde, R., Jampani, V., Gehler, P. V.

In Proceedings IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, USA, October 2017 (inproceedings) Accepted

Abstract
In this work, we propose a technique to convert CNN models for semantic segmentation of static images into CNNs for video data. We describe a warping method that can be used to augment existing architectures with very lit- tle extra computational cost. This module is called Net- Warp and we demonstrate its use for a range of network architectures. The main design principle is to use optical flow of adjacent frames for warping internal network repre- sentations across time. A key insight of this work is that fast optical flow methods can be combined with many different CNN architectures for improved performance and end-to- end training. Experiments validate that the proposed ap- proach incurs only little extra computational cost, while im- proving performance, when video streams are available. We achieve new state-of-the-art results on the standard CamVid and Cityscapes benchmark datasets and show reliable im- provements over different baseline networks. Our code and models are available at http://segmentation.is. tue.mpg.de

pdf Supplementary Project Page [BibTex]

pdf Supplementary Project Page [BibTex]


A simple yet effective baseline for 3d human pose estimation
A simple yet effective baseline for 3d human pose estimation

Martinez, J., Hossain, R., Romero, J., Little, J. J.

In Proceedings IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, USA, October 2017 (inproceedings)

Abstract
Following the success of deep convolutional networks, state-of-the-art methods for 3d human pose estimation have focused on deep end-to-end systems that predict 3d joint locations given raw image pixels. Despite their excellent performance, it is often not easy to understand whether their remaining error stems from a limited 2d pose (visual) understanding, or from a failure to map 2d poses into 3-dimensional positions. With the goal of understanding these sources of error, we set out to build a system that given 2d joint locations predicts 3d positions. Much to our surprise, we have found that, with current technology, "lifting" ground truth 2d joint locations to 3d space is a task that can be solved with a remarkably low error rate: a relatively simple deep feed-forward network outperforms the best reported result by about 30\% on Human3.6M, the largest publicly available 3d pose estimation benchmark. Furthermore, training our system on the output of an off-the-shelf state-of-the-art 2d detector (\ie, using images as input) yields state of the art results -- this includes an array of systems that have been trained end-to-end specifically for this task. Our results indicate that a large portion of the error of modern deep 3d pose estimation systems stems from their visual analysis, and suggests directions to further advance the state of the art in 3d human pose estimation.

video code arxiv pdf preprint Project Page [BibTex]

video code arxiv pdf preprint Project Page [BibTex]


 Effects of animation retargeting on perceived action outcomes
Effects of animation retargeting on perceived action outcomes

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

Proceedings of the ACM Symposium on Applied Perception (SAP’17), pages: 2:1-2:7, September 2017 (conference)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person's movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. Based on a set of 67 markers, we estimated both the kinematics of the actions as well as the performer's individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. In a virtual reality environment, observers rated the perceived weight or thrown distance of the objects. They were also asked to explicitly discriminate between consistent and hybrid stimuli. Observers were unable to accomplish the latter, but hybridization of shape and motion influenced their judgements of action outcome in systematic ways. Inconsistencies between shape and motion were assimilated into an altered perception of the action outcome.

pdf DOI [BibTex]

pdf DOI [BibTex]


Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


Joint Graph Decomposition and Node Labeling by Local Search
Joint Graph Decomposition and Node Labeling by Local Search

Levinkov, E., Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., Andres, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 1904-1912, IEEE, July 2017 (inproceedings)

PDF Supplementary DOI Project Page [BibTex]

PDF Supplementary DOI Project Page [BibTex]


Dynamic {FAUST}: Registering Human Bodies in Motion
Dynamic FAUST: Registering Human Bodies in Motion

Bogo, F., Romero, J., Pons-Moll, G., Black, M. J.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
While the ready availability of 3D scan data has influenced research throughout computer vision, less attention has focused on 4D data; that is 3D scans of moving nonrigid objects, captured over time. To be useful for vision research, such 4D scans need to be registered, or aligned, to a common topology. Consequently, extending mesh registration methods to 4D is important. Unfortunately, no ground-truth datasets are available for quantitative evaluation and comparison of 4D registration methods. To address this we create a novel dataset of high-resolution 4D scans of human subjects in motion, captured at 60 fps. We propose a new mesh registration method that uses both 3D geometry and texture information to register all scans in a sequence to a common reference topology. The approach exploits consistency in texture over both short and long time intervals and deals with temporal offsets between shape and texture capture. We show how using geometry alone results in significant errors in alignment when the motions are fast and non-rigid. We evaluate the accuracy of our registration and provide a dataset of 40,000 raw and aligned meshes. Dynamic FAUST extends the popular FAUST dataset to dynamic 4D data, and is available for research purposes at http://dfaust.is.tue.mpg.de.

pdf video Project Page Project Page Project Page [BibTex]

pdf video Project Page Project Page Project Page [BibTex]


Learning from Synthetic Humans
Learning from Synthetic Humans

Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL (Synthetic hUmans foR REAL tasks): a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.

arXiv project data Project Page Project Page [BibTex]

arXiv project data Project Page Project Page [BibTex]


On human motion prediction using recurrent neural networks
On human motion prediction using recurrent neural networks

Martinez, J., Black, M. J., Romero, J.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Human motion modelling is a classical problem at the intersection of graphics and computer vision, with applications spanning human-computer interaction, motion synthesis, and motion prediction for virtual and augmented reality. Following the success of deep learning methods in several computer vision tasks, recent work has focused on using deep recurrent neural networks (RNNs) to model human motion, with the goal of learning time-dependent representations that perform tasks such as short-term motion prediction and long-term human motion synthesis. We examine recent work, with a focus on the evaluation methodologies commonly used in the literature, and show that, surprisingly, state-of-the-art performance can be achieved by a simple baseline that does not attempt to model motion at all. We investigate this result, and analyze recent RNN methods by looking at the architectures, loss functions, and training procedures used in state-of-the-art approaches. We propose three changes to the standard RNN models typically used for human motion, which result in a simple and scalable RNN architecture that obtains state-of-the-art performance on human motion prediction.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


Articulated Multi-person Tracking in the Wild
Articulated Multi-person Tracking in the Wild

Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B., Schiele, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 1293-1301, IEEE, July 2017, Oral (inproceedings)

DOI [BibTex]

DOI [BibTex]


Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data
Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data

Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 1406-1416, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Existing optical flow datasets are limited in size and variability due to the difficulty of capturing dense ground truth. In this paper, we tackle this problem by tracking pixels through densely sampled space-time volumes recorded with a high-speed video camera. Our model exploits the linearity of small motions and reasons about occlusions from multiple frames. Using our technique, we are able to establish accurate reference flow fields outside the laboratory in natural environments. Besides, we show how our predictions can be used to augment the input images with realistic motion blur. We demonstrate the quality of the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel challenging optical flow dataset by applying our technique on data from a high-speed camera and analyze the performance of the state-of-the-art in optical flow under various levels of motion blur.

pdf suppmat Project page Video DOI Project Page [BibTex]

pdf suppmat Project page Video DOI Project Page [BibTex]


Optical Flow in Mostly Rigid Scenes
Optical Flow in Mostly Rigid Scenes

Wulff, J., Sevilla-Lara, L., Black, M. J.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 6911-6920, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
The optical flow of natural scenes is a combination of the motion of the observer and the independent motion of objects. Existing algorithms typically focus on either recovering motion and structure under the assumption of a purely static world or optical flow for general unconstrained scenes. We combine these approaches in an optical flow algorithm that estimates an explicit segmentation of moving objects from appearance and physical constraints. In static regions we take advantage of strong constraints to jointly estimate the camera motion and the 3D structure of the scene over multiple frames. This allows us to also regularize the structure instead of the motion. Our formulation uses a Plane+Parallax framework, which works even under small baselines, and reduces the motion estimation to a one-dimensional search problem, resulting in more accurate estimation. In moving regions the flow is treated as unconstrained, and computed with an existing optical flow method. The resulting Mostly-Rigid Flow (MR-Flow) method achieves state-of-the-art results on both the MPISintel and KITTI-2015 benchmarks.

pdf SupMat video code Project Page [BibTex]

pdf SupMat video code Project Page [BibTex]


OctNet: Learning Deep 3D Representations at High Resolutions
OctNet: Learning Deep 3D Representations at High Resolutions

Riegler, G., Ulusoy, O., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

pdf suppmat Project Page Video Project Page [BibTex]

pdf suppmat Project Page Video Project Page [BibTex]


Reflectance Adaptive Filtering Improves Intrinsic Image Estimation
Reflectance Adaptive Filtering Improves Intrinsic Image Estimation

Nestmeyer, T., Gehler, P. V.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 1771-1780, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

pre-print DOI Project Page Project Page [BibTex]

pre-print DOI Project Page Project Page [BibTex]


Detailed, accurate, human shape estimation from clothed {3D} scan sequences
Detailed, accurate, human shape estimation from clothed 3D scan sequences

Zhang, C., Pujades, S., Black, M., Pons-Moll, G.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, Washington, DC, USA, July 2017, Spotlight (inproceedings)

Abstract
We address the problem of estimating human body shape from 3D scans over time. Reliable estimation of 3D body shape is necessary for many applications including virtual try-on, health monitoring, and avatar creation for virtual reality. Scanning bodies in minimal clothing, however, presents a practical barrier to these applications. We address this problem by estimating body shape under clothing from a sequence of 3D scans. Previous methods that have exploited statistical models of body shape produce overly smooth shapes lacking personalized details. In this paper we contribute a new approach to recover not only an approximate shape of the person, but also their detailed shape. Our approach allows the estimated shape to deviate from a parametric model to fit the 3D scans. We demonstrate the method using high quality 4D data as well as sequences of visual hulls extracted from multi-view images. We also make available a new high quality 4D dataset that enables quantitative evaluation. Our method outperforms the previous state of the art, both qualitatively and quantitatively.

arxiv_preprint video dataset pdf supplemental DOI Project Page [BibTex]

arxiv_preprint video dataset pdf supplemental DOI Project Page [BibTex]


Optical Flow Estimation using a Spatial Pyramid Network
Optical Flow Estimation using a Spatial Pyramid Network

Ranjan, A., Black, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
We learn to compute optical flow by combining a classical spatial-pyramid formulation with deep learning. This estimates large motions in a coarse-to-fine approach by warping one image of a pair at each pyramid level by the current flow estimate and computing an update to the flow. Instead of the standard minimization of an objective function at each pyramid level, we train one deep network per level to compute the flow update. Unlike the recent FlowNet approach, the networks do not need to deal with large motions; these are dealt with by the pyramid. This has several advantages. First, our Spatial Pyramid Network (SPyNet) is much simpler and 96% smaller than FlowNet in terms of model parameters. This makes it more efficient and appropriate for embedded applications. Second, since the flow at each pyramid level is small (< 1 pixel), a convolutional approach applied to pairs of warped images is appropriate. Third, unlike FlowNet, the learned convolution filters appear similar to classical spatio-temporal filters, giving insight into the method and how to improve it. Our results are more accurate than FlowNet on most standard benchmarks, suggesting a new direction of combining classical flow methods with deep learning.

pdf SupMat project/code [BibTex]

pdf SupMat project/code [BibTex]


Multiple People Tracking by Lifted Multicut and Person Re-identification
Multiple People Tracking by Lifted Multicut and Person Re-identification

Tang, S., Andriluka, M., Andres, B., Schiele, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3701-3710, IEEE Computer Society, Washington, DC, USA, July 2017 (inproceedings)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


{3D} Menagerie: Modeling the {3D} Shape and Pose of Animals
3D Menagerie: Modeling the 3D Shape and Pose of Animals

Zuffi, S., Kanazawa, A., Jacobs, D., Black, M. J.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 5524-5532, IEEE, July 2017 (inproceedings)

Abstract
There has been significant work on learning realistic, articulated, 3D models of the human body. In contrast, there are few such models of animals, despite many applications. The main challenge is that animals are much less cooperative than humans. The best human body models are learned from thousands of 3D scans of people in specific poses, which is infeasible with live animals. Consequently, we learn our model from a small set of 3D scans of toy figurines in arbitrary poses. We employ a novel part-based shape model to compute an initial registration to the scans. We then normalize their pose, learn a statistical shape model, and refine the registrations and the model together. In this way, we accurately align animal scans from different quadruped families with very different shapes and poses. With the registration to a common template we learn a shape space representing animals including lions, cats, dogs, horses, cows and hippos. Animal shapes can be sampled from the model, posed, animated, and fit to data. We demonstrate generalization by fitting it to images of real animals including species not seen in training.

pdf video Project Page [BibTex]

pdf video Project Page [BibTex]


Video Propagation Networks
Video Propagation Networks

Jampani, V., Gadde, R., Gehler, P. V.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

pdf supplementary arXiv project page code Project Page [BibTex]

pdf supplementary arXiv project page code Project Page [BibTex]


Generating Descriptions with Grounded and Co-Referenced People
Generating Descriptions with Grounded and Co-Referenced People

Rohrbach, A., Rohrbach, M., Tang, S., Oh, S. J., Schiele, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 4196-4206, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


Deep representation learning for human motion prediction and classification
Deep representation learning for human motion prediction and classification

Bütepage, J., Black, M., Kragic, D., Kjellström, H.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


Unite the People: Closing the Loop Between 3D and 2D Human Representations
Unite the People: Closing the Loop Between 3D and 2D Human Representations

Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M. J., Gehler, P. V.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
3D models provide a common ground for different representations of human bodies. In turn, robust 2D estimation has proven to be a powerful tool to obtain 3D fits “in-the-wild”. However, depending on the level of detail, it can be hard to impossible to acquire labeled data for training 2D estimators on large scale. We propose a hybrid approach to this problem: with an extended version of the recently introduced SMPLify method, we obtain high quality 3D body model fits for multiple human pose datasets. Human annotators solely sort good and bad fits. This procedure leads to an initial dataset, UP-3D, with rich annotations. With a comprehensive set of experiments, we show how this data can be used to train discriminative models that produce results with an unprecedented level of detail: our models predict 31 segments and 91 landmark locations on the body. Using the 91 landmark pose estimator, we present state-of-the art results for 3D human pose and shape estimation using an order of magnitude less training data and without assumptions about gender or pose in the fitting procedure. We show that UP-3D can be enhanced with these improved fits to grow in quantity and quality, which makes the system deployable on large scale. The data, code and models are available for research purposes.

arXiv project/code/data Project Page [BibTex]

arXiv project/code/data Project Page [BibTex]


Towards Accurate Marker-less Human Shape and Pose Estimation over Time
Towards Accurate Marker-less Human Shape and Pose Estimation over Time

Huang, Y., Bogo, F., Lassner, C., Kanazawa, A., Gehler, P. V., Romero, J., Akhter, I., Black, M. J.

In International Conference on 3D Vision (3DV), pages: 421-430, 2017 (inproceedings)

Abstract
Existing markerless motion capture methods often assume known backgrounds, static cameras, and sequence specific motion priors, limiting their application scenarios. Here we present a fully automatic method that, given multiview videos, estimates 3D human pose and body shape. We take the recently proposed SMPLify method [12] as the base method and extend it in several ways. First we fit a 3D human body model to 2D features detected in multi-view images. Second, we use a CNN method to segment the person in each image and fit the 3D body model to the contours, further improving accuracy. Third we utilize a generic and robust DCT temporal prior to handle the left and right side swapping issue sometimes introduced by the 2D pose estimator. Validation on standard benchmarks shows our results are comparable to the state of the art and also provide a realistic 3D shape avatar. We also demonstrate accurate results on HumanEva and on challenging monocular sequences of dancing from YouTube.

Code pdf DOI Project Page [BibTex]

2012


Assessment of Computational Visual Attention Models on Medical Images
Assessment of Computational Visual Attention Models on Medical Images

Jampani, V., Ujjwal, , Sivaswamy, J., Vaidya, V.

Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, pages: 80:1-80:8, ACM, Mumbai, India, December 2012 (conference)

Abstract
Visual attention plays a major role in our lives. Our very perception (which very much decides our survival) depends on it - like perceiving a predator while walking through a forest, perceiving a fast car coming from the front on a busy road or even spotting our favorite color out of the many colors. In Medical Imaging, where medical experts have to take major clinical decisions based on the examination of images of various kinds (CT, MRI etc), visual attention plays a pivotal role. It makes the medical experts fixate on any abnormal behavior exhibited in the medical image and helps in speedy diagnosis. Many previous works (see the paper for details) have exhibited this important fact and the model proposed by Nodine and Kundel highlights the important role of visual attention in medical image diagnosis. Visual attention involves two components - Bottom-Up and Top-Down.In the present work, we examine a number of established computational models of visual attention in the context of chest X-rays (infected with Pneumoconiosis) and retinal images (having hard exudates). The fundamental motivation is to try to understand the applicability of visual attention models in the context of different types of abnormalities. Our assessment of four popular visual attention models, is extensive and shows that they are able to pick up abnormal features reasonably well. We compare the models towards detecting subtle abnormalities and high-contrast lesions. Although significant scope of improvements exists especially in picking up more subtle abnormalities and getting more selective towards picking up more abnormalities and less normal structures, the presented assessment shows that visual attention indeed shows a promise for inclusion in the main field of medical image analysis

url pdf poster link (url) [BibTex]

2012

url pdf poster link (url) [BibTex]


Lie Bodies: A Manifold Representation of {3D} Human Shape
Lie Bodies: A Manifold Representation of 3D Human Shape

Freifeld, O., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deformations and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more meaningful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of modeling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analysis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods.

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]


Coregistration: Simultaneous alignment and modeling of articulated {3D} shape
Coregistration: Simultaneous alignment and modeling of articulated 3D shape

Hirshberg, D., Loper, M., Rachlin, E., Black, M.

In European Conf. on Computer Vision (ECCV), pages: 242-255, LNCS 7577, Part IV, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional (3D) shape models are powerful because they enable the inference of object shape from incomplete, noisy, or ambiguous 2D or 3D data. For example, realistic parameterized 3D human body models have been used to infer the shape and pose of people from images. To train such models, a corpus of 3D body scans is typically brought into registration by aligning a common 3D human-shaped template to each scan. This is an ill-posed problem that typically involves solving an optimization problem with regularization terms that penalize implausible deformations of the template. When aligning a corpus, however, we can do better than generic regularization. If we have a model of how the template can deform then alignments can be regularized by this model. Constructing a model of deformations, however, requires having a corpus that is already registered. We address this chicken-and-egg problem by approaching modeling and registration together. By minimizing a single objective function, we reliably obtain high quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly realistic articulated body model. The model greatly improves robustness to noise and missing data. Since the model explains a corpus of body scans, it captures how body shape varies across people and poses.

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]


Lessons and insights from creating a synthetic optical flow benchmark
Lessons and insights from creating a synthetic optical flow benchmark

Wulff, J., Butler, D. J., Stanley, G. B., Black, M. J.

In ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, pages: 168-177, Part II, LNCS 7584, (Editors: A. Fusiello et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

pdf dataset poster youtube Project Page [BibTex]

pdf dataset poster youtube Project Page [BibTex]


3D2PM {--} 3D Deformable Part Models
3D2PM – 3D Deformable Part Models

Pepik, B., Gehler, P., Stark, M., Schiele, B.

In Proceedings of the European Conference on Computer Vision (ECCV), pages: 356-370, Lecture Notes in Computer Science, (Editors: Fitzgibbon, Andrew W. and Lazebnik, Svetlana and Perona, Pietro and Sato, Yoichi and Schmid, Cordelia), Springer, Firenze, October 2012 (inproceedings)

pdf video poster Project Page [BibTex]

pdf video poster Project Page [BibTex]


A naturalistic open source movie for optical flow evaluation
A naturalistic open source movie for optical flow evaluation

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 611-625, Part IV, LNCS 7577, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]


{Characterization of 3-D Volumetric Probabilistic Scenes for Object Recognition}
Characterization of 3-D Volumetric Probabilistic Scenes for Object Recognition

Restrepo, M. I., Mayer, B. A., Ulusoy, A. O., Mundy, J. L.

In Selected Topics in Signal Processing, IEEE Journal of, 6(5):522-537, September 2012 (inproceedings)

Abstract
This paper presents a new volumetric representation for categorizing objects in large-scale 3-D scenes reconstructed from image sequences. This work uses a probabilistic volumetric model (PVM) that combines the ideas of background modeling and volumetric multi-view reconstruction to handle the uncertainty inherent in the problem of reconstructing 3-D structures from 2-D images. The advantages of probabilistic modeling have been demonstrated by recent application of the PVM representation to video image registration, change detection and classification of changes based on PVM context. The applications just mentioned, operate on 2-D projections of the PVM. This paper presents the first work to characterize and use the local 3-D information in the scenes. Two approaches to local feature description are proposed and compared: 1) features derived from a PCA analysis of model neighborhoods; and 2) features derived from the coefficients of a 3-D Taylor series expansion within each neighborhood. The resulting description is used in a bag-of-features approach to classify buildings, houses, cars, planes, and parking lots learned from aerial imagery collected over Providence, RI. It is shown that both feature descriptions explain the data with similar accuracy and their effectiveness for dense-feature categorization is compared for the different classes. Finally, 3-D extensions of the Harris corner detector and a Hessian-based detector are used to detect salient features. Both types of salient features are evaluated through object categorization experiments, where only features with maximal response are retained. For most saliency criteria tested, features based on the determinant of the Hessian achieved higher classification accuracy than Harris-based features.

pdf DOI [BibTex]

pdf DOI [BibTex]


A framework for relating neural activity to freely moving behavior
A framework for relating neural activity to freely moving behavior

Foster, J. D., Nuyujukian, P., Freifeld, O., Ryu, S., Black, M. J., Shenoy, K. V.

In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’12), pages: 2736 -2739 , IEEE, San Diego, August 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Pottics {--} The Potts Topic Model for Semantic Image Segmentation
Pottics – The Potts Topic Model for Semantic Image Segmentation

Dann, C., Gehler, P., Roth, S., Nowozin, S.

In Proceedings of 34th DAGM Symposium, pages: 397-407, Lecture Notes in Computer Science, (Editors: Pinz, Axel and Pock, Thomas and Bischof, Horst and Leberl, Franz), Springer, August 2012 (inproceedings)

code pdf poster [BibTex]

code pdf poster [BibTex]


Psoriasis segmentation through chromatic regions and Geometric Active Contours
Psoriasis segmentation through chromatic regions and Geometric Active Contours

Bogo, F., Samory, M., Belloni Fortina, A., Piaserico, S., Peserico, E.

In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’12), pages: 5388-5391, San Diego, August 2012 (inproceedings)

pdf [BibTex]

pdf [BibTex]


PCA-enhanced stochastic optimization methods
PCA-enhanced stochastic optimization methods

Kuznetsova, A., Pons-Moll, G., Rosenhahn, B.

In German Conference on Pattern Recognition (GCPR), August 2012 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


Learning Search Based Inference for Object Detection
Learning Search Based Inference for Object Detection

Gehler, P., Lehmann, A.

In International Conference on Machine Learning (ICML) workshop on Inferning: Interactions between Inference and Learning, Edinburgh, Scotland, UK, July 2012, short version of BMVC11 paper (http://ps.is.tue.mpg.de/publications/31/get_file) (inproceedings)

pdf [BibTex]

pdf [BibTex]


Distribution Fields for Tracking
Distribution Fields for Tracking

Sevilla-Lara, L., Learned-Miller, E.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, June 2012 (inproceedings)

Abstract
Visual tracking of general objects often relies on the assumption that gradient descent of the alignment function will reach the global optimum. A common technique to smooth the objective function is to blur the image. However, blurring the image destroys image information, which can cause the target to be lost. To address this problem we introduce a method for building an image descriptor using distribution fields (DFs), a representation that allows smoothing the objective function without destroying information about pixel values. We present experimental evidence on the superiority of the width of the basin of attraction around the global optimum of DFs over other descriptors. DFs also allow the representation of uncertainty about the tracked object. This helps in disregarding outliers during tracking (like occlusions or small misalignments) without modeling them explicitly. Finally, this provides a convenient way to aggregate the observations of the object through time and maintain an updated model. We present a simple tracking algorithm that uses DFs and obtains state-of-the-art results on standard benchmarks.

pdf Matlab code [BibTex]

pdf Matlab code [BibTex]


From pictorial structures to deformable structures
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]


Teaching 3D Geometry to Deformable Part Models
Teaching 3D Geometry to Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3362 -3369, IEEE, Providence, RI, USA, June 2012, oral presentation (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]